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Executive summary 

The development of an onshore gas industry in the Beetaloo region has the potential to impact on 
terrestrial biodiversity, ecosystem function and landscape integrity. Recent inquiries into hydraulic 
fracturing in the region have noted potential impact pathways on a broad range of environmental 
values, highlighting the need for mitigation measures and ongoing monitoring to assess impacts. 
The community has concerns about potential long-term impacts on the biodiversity of the region. 
They need reassurance that potential impacts are being mitigated and that any effects of resource 
development can be detected and managed.  

Petroleum interest holders are required to describe the existing environment that may be affected 
by proposed activities in their Environmental Management Plans and must have a monitoring 
program that allows for auditing of the environmental performance of the activity. Field surveys 
are spatially and temporally limited, and the sensitivity of satellite remote sensing to subtle 
disturbances, and those that compound through time, is still poorly understood.  Robust, 
repeatable, and easily deployable technologies that allow habitat condition to be reliably 
measured and monitored will be highly valuable in achieving these requirements and will provide 
reassurance to the broader community. 

This project explored the development of a scalable and systematic approach for monitoring the 
structural condition of vegetation in the Beetaloo region. We aimed to: i) test the sensitivity of 
Synthetic Aperture Radar (SAR) imagery to spatio-temporal variation in habitat structural 
properties; ii) use machine learning to establish relationships between UAV-LiDAR structural 
metrics and spaceborne imagery using the high-quality UAV-LiDAR data for calibration and 
validation; and iii) use these models to predict vegetation structure, and structural change, across 
broader landscapes. 

High-quality LiDAR point clouds were captured over diverse vegetation structures with survey 
grade UAV equipment in October 2023 and April 2024. Sentinel-1 SAR backscatter intensity images 
were processed as monthly, seasonal and annual composites from July 2019 to June 2024. UAV-
LiDAR structural metrics were strongly correlated with Sentinel-1 backscatter intensity across all 
temporal aggregation periods, but the strongest correlations were found late in the dry season. 
Random Forest modelling showed that key structural metrics (such as Gap Fraction Probability, 
Plant Area Index, canopy density, height diversity, and height percentiles) could be predicted from 
combinations of Sentinel-1 VH and VV backscatter intensity across large landscape scales after 
training the models with high-quality point cloud data. The inclusion of Sentinel-2 multispectral 
imagery in the models further improved the predictive reliability, with Concordance Correlation 
Coefficients ranging from 0.76-0.89 for the metrics mentioned above.  

Results from this study highlight the power of fusing open access and readily available SAR and 
multi-spectral imagery for regional scale habitat characterisation and monitoring. The collection of 
high-quality UAV-LiDAR data provided a strong basis for building predictive machine learning 
models, closing the gap between what data can be collected in the field, and what can be 
estimated from space. These findings lay the foundation for systematic on-going monitoring of 
vegetation structure over the broader region. This approach addresses the limitations of spatial 
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and temporal limitations of field surveys, and greatly improves the utility of satellite remote 
sensing. A systematic monitoring program using the methods described in this study may provide 
an objective dataset that reassures stakeholders, including the broader community, that potential 
impacts are detected and mitigated. 

These models can undergo continuous improvement through the inclusion of additional LiDAR 
collections, and by building long-term temporal records of vegetation structure from LiDAR to 
better assess sensitivity to dynamics. Temporal trends in vegetation structure in these landscapes 
need to be interpreted in the context of broader patterns in landscape water availability. 
Leveraging additional information from spaceborne sensors, such as gravity measurements and 
SAR phase coherence, will assist in attributing causality to vegetation dynamics emerging through 
statistical or machine learning models. Understanding longer-term seasonal and inter-annual 
patterns of change is imperative for assessing potential impacts arising from development.  
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1 Background 

The development of an onshore gas industry in the Beetaloo region has the potential to impact 
terrestrial biodiversity, ecosystem function and landscape integrity. Community concerns about 
these impacts were noted in The Final Report of the Inquiry into Hydraulic Fracturing in the 
Northern Territory (2018). The Geological and Bioregional Assessment (GBA) for the Beetaloo 
region (Geological and Bioregional Assessments Program, 2021) also noted a number of impact 
pathways with potential to affect a broad range of environmental values (see GBA website). 
Nevertheless, the GBA suggested that these potential impacts could be mitigated and emphasised 
the importance of ongoing monitoring to assess impacts.  

Monitoring trends in habitat condition and attributing causality to specific drivers is extremely 
challenging in heterogenous ecosystems. Traditional monitoring approaches rely on field-based 
estimates of habitat, but these approaches are limited in their spatial and temporal representation 
of landscapes. Field-based measures of habitat focus on a small number of habitat metrics that are 
feasible to measure on the ground, but which may not holistically capture habitat status. Remote 
sensing technology offers solutions for habitat monitoring that are spatially continuous and 
systematically collected through time (Nagendra et al., 2013). Such measurement approaches are 
more feasible from a monitoring perspective as spatio-temporal trends in data can be interrogated 
to understand natural system dynamics and identify deviations from expected patterns. However, 
the trade-off for most satellite sensors that provide wall-to-wall mapping at regular time intervals 
(e.g. Landsat and Sentinel missions) is that they acquire information of limited dimensionality and 
at pixel resolutions coarser than individual plant canopies. To maximise the utility of these sensors 
for monitoring habitat condition and dynamics, it is critical to calibrate the reflectance and 
backscatter signals with high-resolution data at the scale of individual plants. 

1.1 Prior Research  

The Beetaloo Sub-region has been a focus of environmental research since 2018. The major 
projects undertaken in the period 2018-2023 that are relevant to the current project are 
summarised below.  

The Geological and Bioregional Assessment (GBA) of the Beetaloo Sub-basin produced a series of 
reports covering the natural and social landscape of the region. It also provided a full impact 
assessment and developed causal pathways that linked activities from an onshore gas industry 
with impacts to threatened species and various aspects of biodiversity (refer to Beetaloo GBA 
region synthesis). 

The GBA found that most potential impact pathways are related to surface disturbance such as 
civil construction, decommissioning, and rehabilitation. The pathways of concern connect these 
activities with the protected matters, protected fauna and terrestrial vegetation endpoints, 
reflecting the potential impact of surface disturbance. The assessment determined that potential 
impacts could be minimised or mitigated by existing management controls (Huddlestone-Holmes 
et al., 2020).  

https://frackinginquiry.nt.gov.au/__data/assets/pdf_file/0006/494286/Complete-Final-Report_Web.pdf
https://gba-explorer.bioregionalassessments.gov.au/bee/9?pins=26
https://www.bioregionalassessments.gov.au/gba/beetaloo-gba-region-synthesis
https://www.bioregionalassessments.gov.au/gba/beetaloo-gba-region-synthesis
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The causal network for the Beetaloo identified the points along a pathway where monitoring 
would be most useful. Results from the impact assessment informed four broad monitoring 
objectives: (i) estimating baseline and trend, (ii) comparing areas of potential impact with areas 
where no changes occur (control sites), (iii) monitoring compliance with, and effectiveness of, 
mitigation strategies, and (iv) monitoring to validate and refine the causal network. 

The Strategic Regional Environmental and Baseline Assessment (SREBA) for the Beetaloo Sub-basin 
was undertaken following the recommendations of the Scientific Inquiry into Hydraulic Fracturing 
in the Northern Territory (2018). The SREBA addressed several key topics across the Beetaloo 
including water quality and quantity, aquatic ecosystems, terrestrial ecosystems, greenhouse 
gases, human health and social, and cultural and economic studies. Regional vegetation mapping 
and systematic flora (1,818 taxa) and fauna (354 vertebrate species) surveys have greatly 
increased knowledge of the terrestrial ecosystems in the Beetaloo region. The main terrestrial 
biodiversity values within the study area were stated to be: (a) Sites of Conservation Significance 
(Mataranka Thermal Pools and Lake Woods/Longreach Waterhole), (b) high value vegetation 
types, and (c) important habitat for waterbirds and threatened species (Department of 
Environment Parks and Water Security, 2022).  

The GISERA program in the Northern Territory has funded several important projects, at least two 
of which are relevant to this project. The GISERA Putting land management knowledge into 
practice project explored the use of a high resolution ‘digital twin’ created from photogrammetry 
to evaluate the design and placement of gas infrastructure, protect surface water and vegetation, 
and reduce erosion, soil damage and dust (Huth et al., 2019). The GISERA Beetaloo biodiversity 
project (Pavey et al. 2025) assessed the impacts to biodiversity of roads and other infrastructure, 
and of habitat fragmentation in the Beetaloo Sub-region, focussing on the area east of Daly 
Waters where most development is likely to occur. The study examined vegetation fragmentation 
and connectivity using high-resolution (10 m) surfaces modelled using Sentinel-2 composite multi-
spectral images from the dry season of 2021 (July-September). The study focussed on vegetation 
with a woody cover fraction of > 20 % and a height of > 2 m. Pixel-based methods for assessing 
fragmentation and connectivity were applied to four regions each of 50 km by 50 km. The study 
showed that indicators of fragmentation (FAD; Foreground Area Density) and connectivity (MSPA; 
Morphological Spatial Pattern Analysis), although designed for forest ecosystems, can also be 
applied to savanna and associated vegetation in northern Australia including the Beetaloo Sub-
region. 

The study also assessed patch mosaics in areas of bullwaddy (Macropteranthes kekwickii) and 
lancewood (Acacia shirleyi) - vegetation types that potentially support the highest concentrations 
of species ‘at risk’ from linear corridors. Floristic composition and vegetation structure differed 
according to patch size, and results suggest that the species-rich small bullwaddy stands may be 
persisting as low flammability islands in the landscape matrix of highly flammable savanna. In 
contrast, lancewood is currently absent from portions of the landscape where fire is frequent 
because, compared to bullwaddy, it is fire-prone, and it is very sensitive to fire interval due to its 
long juvenile period and low resistance to fire in adult trees. The small patches of bullwaddy may 
therefore be a sign that fire is presently too frequent in this landscape and lancewood stands are 
being lost. Overall, the study suggested that small patches dominated by bullwaddy should be of 
management and monitoring priority.  
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2 Research project goals 

Petroleum interest holders are required to describe the existing environment that may be affected 
by proposed activities in their Environmental Management Plans (see EMP Guidelines). They must 
also have a monitoring program that allows for auditing of the environmental performance of the 
activity. Robust, repeatable, and easily deployable technologies that allow habitat condition to be 
reliably measured and monitored will be highly valuable in achieving these requirements. 

This project aimed to extend a feasibility study conducted as part of the GBA program to use 
remote sensing technology to monitor the condition of habitat in the Beetaloo region. The 
scientific value spans both applied and empirical research, as there is growing momentum 
internationally and nationally for Earth Observation science to inform the monitoring of Essential 
Biodiversity Variables (EBVs) and the United Nation’s System of Environmental Economic 
Accounting (SEEA) (Pereira et al., 2013; Vihervaara et al., 2017). However fundamental research 
into new sensor technologies, their sensitivities to different magnitudes of change, and their 
scalability, needs to be undertaken to provide confidence in these assessments (Daniel Kissling et 
al., 2024). Overcoming these gaps in knowledge is key to advancing routine operational 
monitoring of habitat condition over large and remote landscapes, and to verify effectiveness of 
mitigation methods. 

Three-dimensional structure is a fundamental physical element of habitat and has long been 
identified as a key determinant of biological diversity, particularly in woodland ecosystems 
(MacArthur & MacArthur, 1961). Light-detection-and-ranging (LiDAR) can supply detailed 
information about the three-dimensional structure of vegetation elements and their spatial 
variability, and thus its use in habitat assessment has gained rapid traction since its emergence in 
ecology (Lefsky et al., 2002). Most studies utilising LiDAR for assessing habitat focus on deriving a 
spatial model of one or more elements of vegetation vertical or horizontal structure and then 
apply these models for predicting habitat suitability for a specific organism based on known 
habitat requirements (Hill & Hinsley, 2015). Very few studies have tried to explore the upscaling of 
LiDAR to Synthetic Aperture Radar (SAR) in the context of biodiversity monitoring, but there is 
evidence from temperate forests that this approach has merit (see Bae et al., 2019). 

2.1 Study objective 

The primary objective of this project was to develop a scalable approach for monitoring the 
structural condition of vegetation in the Beetaloo region. We aimed to demonstrate the 
application of high-resolution UAV-LiDAR to study site characterisation and test the potential for 
upscaling to larger areas via satellite-based remote sensing platforms. 

Most remote sensing research in the field of habitat condition monitoring has focused on multi-
spectral reflectance, however in dynamic tree-grass ecosystems and in landscapes with prominent 
background soil reflectance, spectral indicators of habitat structural state may saturate in the 
multi-spectral domain (Mutanga et al., 2023). Here, we aimed to test an active remote sensing to 

https://depws.nt.gov.au/onshore-gas/guidelines/emp-content-guideline
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this challenge by using Synthetic Aperture Radar (SAR) satellites to assess subtle variations in 
structural characteristics that are associated with habitat condition. Specifically, we aimed to: 

1. Map the 3D structure of woody vegetation canopies with high-quality UAV-LiDAR 
surveying. 

2. Test the sensitivity of Synthetic Aperture Radar (SAR) imagery to spatio-temporal variation 
in habitat structural properties, using the high-quality UAV-LiDAR data for calibration and 
validation. 

3. Use the relationship between UAV-LiDAR structural metrics and spaceborne imagery to 
predict vegetation structure across broader unsampled areas. 

 

 

 
Figure 1 – UAV-LiDAR flights were conducted out of Daly Waters in Central Beetaloo region (a). Surveys areas (green boxes) were 
concentred along the southern side of the Carpentaria highway (b and c) and aimed to capture diverse vegetation patch 
structures. 
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3 Research approach and methods 

3.1 Study site description 

The study region is part of the Sturt Plateau Bioregion, a predominantly flat erosional plain of 
shallow infertile soil and dominated by savanna woodlands of mixed eucalypts and bloodwoods 
with a perennial grass understorey, and open woodlands on clay soil floodplains (Huddlestone-
Holmes et al., 2020). In this part of the bioregion, forest, and woodland patches of lancewood and 
bullwaddy are an additional prominent landscape component. The lancewood canopy dominant, 
Acacia shirleyi, is a single-stemmed tree to 15 m that grows in shallow gravelly or skeletal sandy 
soils on sandstone or laterite, often forming dense stands, but also occurring in closed forests, low 
open forests, or mixed savanna woodlands. The bullwaddy dominant, Macropteranthes kekwickii, 
is a tree or shrub that can form dense impenetrable thickets and is also associated with lateritic 
soils. These canopy species often co-occur but their relative abundance is variable across their 
range. Woodland with dense bullwaddy cover supports high species richness relative to 
woodland/forest dominated by lancewood. Thick bullwaddy patches (‘thickets’) are further known 
to support a high richness of rainforest allied taxa, predominantly climbing vines, trees, and 
shrubs. Average annual rainfall is 675.9 mm. The majority of that rainfall (85% on average) falls 
during the four months from December to March.  

3.2 UAV-LiDAR acquisition and processing 

3.2.1 Data acquisition 

UAV-LiDAR data were acquired in the central region of the Beetaloo to capture a range of different 
vegetation structural classes (Figure 1). The UAV platform was an Acecore Noa hexacopter, fitted 
with a RIEGL survey-grade VUX-120 laser scanner (Figure 2), which has a ranging precision of 5 
mm. The VUX-120 uses a forward-nadir-backward scan pattern, alternating between scanning at ‒
10° from the surface directly below the sensor (nadir), nadir and +10° from the nadir, which 
increases the probability of receiving laser returns from vertical surfaces. The VUX-120 sensor was 
operated at a scanning rate of 1,200 kHz with a line speed of 291 lines per second. 

Each UAV flight covered an area of 80-100 ha, flown at an altitude of 120 m above ground level 
using a north-south pattern (e.g., Figure 3). Surveys were conducted at a speed of 8 ms-1 and with 
a line spacing of 120 m, with total flight times ranging between 24 and 28 mins. A field base 
station, consisting of a Leica GS16 Global Navigation Satellite System (GNSS) receiver mounted on 
a survey tripod with a leveling tribrach, logged data over a 2-hour period per flight, spanning the 
flight duration. 

The UAV-LiDAR datasets were collected in October 2023 (200 ha) and April 2024 (1000 ha). 
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Figure 2 - Acecore Noa hexacopter with Riegl VUX-120 LiDAR sensor (a). Typical launch site during Beetaloo field campaigns (b). 

3.2.2 UAV-LiDAR raw data processing 

The GNSS logs collected by the base station were processed using Geoscience Australia's online 
GPS processing service, AUSPOS (version 2.4). AUSPOS uses up to 15 nearby reference stations 
from the International GNSS Service and the Asia-Pacific Reference Frame Network to perform 
double differencing. This method calculates the difference between signals received from two 
satellites at two different receivers, reducing the influence of clock and atmospheric errors and 
ensuring high coordinate precision. 

The corrected geographic positions were then used to refine the raw flight path data collected by 
the APX-20 Inertial Measurement Unit (IMU) and GPS onboard the Acecore Noa. This refinement 
was performed using Trimble’s Applanix POSPac UAV Suite 9.1 (dedicated manufacturer’s 
software for processing and adjusting UAV trajectories). 

The raw UAV-LiDAR flight lines were processed along with the corrected trajectory data using 
RIEGL’s RiPROCESS software suite (v1.9.5). The flight lines were first clipped using the RXP cutter 
tool to remove lower quality data collected during flight turns or while transiting to the planned 
mission. Next, strip alignment was performed with RIEGL’s RiPrecision tool to reduce systematic 
errors and biases in overlapping flight lines, which may arise from variations in GNSS signal quality 
and flight conditions. The refined flight lines and trajectory files were then exported in .laz and .txt 
format respectively, and their alignment was further fine-tuned using BayesStripAlign 2.24 
(dedicated software using Bayesian inference to solve flightline misalignments). 
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Figure 3 - Typical site survey with eight flightlines (white) of 1 km each, spaced 120 m apart, with the resulting point cloud 
displayed underneath. Warmer colours in the point cloud represent higher elevation above sea level. 

 

 

3.2.3 UAV-LiDAR point cloud processing 

The geolocated .laz flightlines were post-processed through batch scripts using LAStools (v2.0.3) 
routines to produce the analysis ready LiDAR datasets. The overlapping flightlines were cut into 
500 m x 500 m tiles, with 10 m buffering to prevent edge artifacts, using lastile. For each UAV-
LiDAR tile, ground returns were classified with lasground, and then normalised to height above 
ground level with the lasheight function. Any stray points that were either below ground level or 
higher than 40 m above ground level (erroneous data points that can arise from interactions with 
water on the ground surface, dust in the atmosphere, or birds in flight) were removed with 
lasheight. The cleaned and height normalised UAV-LiDAR .laz file tiles were used as the data inputs 
in the structural analyses described in Section 4.1. Examples of the high resolution digital terrain 
models (DTMs) and canopy height models (CHMs) derived from the UAV-LiDAR surveying are 
shown in Figure 4and Figure 5 respectively.  
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Figure 4 – Digital terrain model (DTM) derived from UAV-LiDAR. Note detection of lower lying drainage patches and road verges. 

 

 
Figure 5 – Vegetation canopy height model (CHM) derived from UAV-LiDAR surveys, showing good delineation of roads and 
vegetation patches (a) and individual trees (b & c). note the detection of dead trees in (c). 

 

 



  |  9 

3.3 Spaceborne Synthetic Aperture Radar (SAR) processing 

3.3.1 Synthetic Aperture Radar (SAR) 

Synthetic Aperture Radar (SAR) sensors are frequently used for Earth observation applications, 
either as a complement to optical sensors, or for some of their specific, unique capabilities. They 
are active sensors, emitting their own electromagnetic waves, with wavelengths in the centimetre 
scale, which is five orders of magnitude longer than the visible light (Jensen, 2014). Such active 
sensors have the advantage of not relying on another electromagnetic wave sources, enabling 
them to acquire data during the day and at night. The longer wavelength is also better at 
penetrating through clouds and smoke, so SAR images are less impacted by atmospheric 
conditions. Another advantage of SAR imagery is the retrieval of the radar phase information - 
recording the phase value along the sinusoidal signal when it hits the sensors after being reflected 
on Earth’s surface. Comparing the phase information along a time series of radar images is 
referred to as Radar Interferometry, or InSAR (Massonnet & Feigl, 1998). This information allows 
detecting changes of elevation and structure of ground targets over which the signal bounces, 
with major applications in different science domains including hydrology, geology and ecology. 

3.3.2 Sentinel-1 imagery 

Sentinel-1 satellites, built and operated by the European Space Agency (ESA), are the first SAR 
systems designed for global monitoring of the Earth’s surface (Torres et al., 2012). The Sentinel-1 
SAR constellation comprises three satellites, Sentinel-1A, Sentinel-1B and Sentinel-1C (launched in 
2014, 2016 and 2024, respectively). A malfunction in Sentinel-1B power systems in December 
2021 led to its decommissioning shortly after, so current data is being collected by Sentinel-1A and 
Sentinel-1C. All Sentinel-1 data products are publicly available at no cost to the end-user, in 
accordance with open access data sharing policy from the European Commission. In Australia, 
distribution of Sentinel-1 data is managed through the Copernicus Australasia Regional Data Hub. 
The Hub is located and operated from the National Computational Infrastructure (NCI) in 
Canberra. 

The Sentinel-1 constellation follows an orbital cycle of 12 days, meaning that repeat-pass images 
are theoretically acquired every 12 days over all land areas across the planet. Sentinel-1's nominal 
spatial resolution, in the Interferometric Wide (IW) swath mode typically used for land 
applications, is approximately 5 meters in the along-track direction (azimuth) and 20 meters in the 
across-track direction (range). The medium resolution, high temporal frequency and global 
coverage of Sentinel-1 data makes it particularly suited for large-scale applications. These include 
ground deformation monitoring for tectonics, volcanology (e.g., Albino et al., 2020) or 
groundwater (e.g., Parker et al., 2021). It also includes large scale monitoring of vegetation, soil 
moisture and erosion (e.g., Castellazzi et al., 2023). These applications typically use backscatter 
intensity images, representing the strength of the radar signal scattered back to the sensor by the 
features on the Earth’s surface. Backscatter intensity is typically expressed in decibels (db). Some 
applications also leverage the phase information, which provides insight into on the changes of 
distance between the sensors and the ground features.  
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3.3.3 Radar backscatter processing 

Different types of backscatter intensity images can be produced from spaceborne radar sensors, 
according to the polarisation of the radar wave emitted and the polarisation of the receiving 
antenna. Being a dual-polarised sensor, two image bands are produced by Sentinel-1, one 
corresponding to a vertically emitted wave and a vertically received wave (VV), and one 
corresponding to a vertically emitted wave and a horizontally received wave (VH). VV signal is 
typically stronger than VH, as it only measures a portion of the original signal, which is spread 
angularly, typically by bouncing over rough or complex structures such as soils and vegetation 
canopy. The VH band, or an indication of its proportion in comparison to VV, are widely used in 
vegetation monitoring applications (e.g., Veloso et al., 2017). 

Sentinel-1 Interferometric Wide (IW) images in the Ground Range Detected (GRD) format were 
used in this study. This format is a pre-processed, calibrated, ortho-corrected product. It is suitable 
for applications requiring both VV and VH intensity products. Postprocessing steps applied to the 
GRD imagery data are, in order: Calibration to Gamma Nought, Filtering using a Lee filter, Multi-
looking, Resampling to a global 20-m resolution grid. The processing was performed using the 
Sentinel Application Platform (SNAP 11), developed by the ESA specifically for processing Sentinel-
1 data. Temporal compositing of the VV and VH backscatter images by month and season was 
performed in CSIRO’s EASI Hub platform. To explore other processing parameters, another 
processing chain based on the Sarscape software was tested (see section 8.1.1). Results from this 
processing chain are presented in the ‘Future directions’ (section 6.2). 

 

3.4 Spaceborne multi-spectral image processing 

3.4.1 Background on Sentinel-2 multi-spectral data 

The Sentinel-2 satellite constellation, operated by the European Space Agency, has provided near-
global (56°S to 83°N) publicly available multi-spectral imagery from mid-2015 to present (Drusch 
et al., 2012). These satellites acquire data for 13 spectral bands covering the visible, near-infrared 
and short-wave infrared wavelengths with a spatial resolution of between 10 and 60 m. 
Historically, the constellation has been comprised of two satellites, Sentinel-2A and Sentinel-2B, 
that enable a revisit time of 5-days. As of January 2025, data updates from Sentinel-2A have been 
replaced by Sentinel-2C, the third Sentinel-2 satellite that was launched in September 2024. 
Sentinel-2D is scheduled to succeed Sentinel-2B in 2028, which will ensure a consistent and 
temporally contiguous record of multi-spectral imagery for earth observation applications 
(Toulemont et al., 2021).  

3.4.2 Surface reflectance processing 

Storage and distribution of Sentinel-2 data in Australia is managed through the Copernicus 
Australasia Regional Data Hub. Our study utilised Sentinel-2A and Sentinel-2B surface reflectance 
(SR) images that were pre-processed by Geoscience Australia (2022a, 2022b). These data are 
considered ‘analysis ready’, as they have been corrected for atmospheric conditions, the 
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bidirectional reflectance distribution function (i.e., surface characteristics, solar radiation, and 
sensor view angle), and terrain illumination. All images intersecting the study region and available 
between June 2019 and May 2024 were downloaded from S3 cloud storage via the Spatio-
Temporal Asset Catalog (STAC) maintained by Geoscience Australia.  

Composite images (i.e., statistical summaries of surface reflectance over a fixed temporal window) 
were calculated using the geometric median at annual, seasonal and monthly frequencies for the 
purposes of modelling LiDAR structural metrics. While computationally expensive to calculate, the 
geometric median preserves the relationships between spectral bands and mitigates the effects of 
outliers and noise (see Roberts et al., 2017, 2018). The steps to calculate these composites 
included: (i) select spectral bands for modelling (see Table 1, the 60 m coastal aerosol, water 
vapour and cirrus bands were excluded), (ii) exclude images with greater than 80% cloud cover, 
(iii) resample all bands to a common resolution of 20 m, (iv) apply pixel-level cloud masking to the 
time-series, and (v) compute the geometric median at each pixel across the study region for the 
aggregation period of interest (i.e., annual, seasonal, monthly). Cloud masks were applied using 
the ‘s2cloudless’ band provided with the Sentinel-2A and 2B imagery by calculating the maximum 
cloud probability within 100 m of each pixel and then masking all pixels where the cloud 
probability exceeded 0.5. All geometric median calculations were conducted in R, using 64 core / 
512 GB RAM nodes on CSIRO’s Petrichor High Performance Computing cluster.      

 

Table 1 – Sentinel-2A and 2B multi-spectral bands used for modelling LiDAR structural metrics (Geoscience Australia, 2022a, 
2022b).  

Band Descrip-on Wavelength Na-ve / resampled 
resolu-on 

nbart_blue Blue 492.4 nm (2A), 492.1 nm (2B) 10 m / 20 m 
nbart_green Green 559.8 nm (2A), 559.0 nm (2B) 10 m / 20 m 
nbart_red Red 664.6 nm (2A), 665.0 nm (2B) 10 m / 20 m 
nbart_red_edge_1 Red edge 704.1 nm (2A), 703.8 nm (2B) 20 m / 20 m 
nbart_red_edge_2 Red edge 740.5 nm (2A), 739.1 nm (2B) 20 m / 20 m 
nbart_red_edge_3 Red edge 782.8 nm (2A), 779.7 nm (2B) 20 m / 20 m 
nbart_nir_1 Near infrared 832.8 nm (2A), 833.0 nm (2B) 10 m / 20 m 
nbart_nir_2 Near infrared 864.7 nm (2A), 864.0 nm (2B) 20 m / 20 m 
nbart_swir_2 Short-wave infrared 1613.7 nm (2A), 1610.4 nm (2B) 20 m / 20 m 
nbart_swir_3 Short-wave infrared 2202.4 nm (2A), 2185.7 nm (2B) 20 m / 20 m 
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4 Statistical analyses and modelling 

4.1 Structural metrics from LiDAR point-clouds 

The capture of high-resolution and high-quality UAV-LiDAR point clouds provides the opportunity 
to summarise 3D vertical and horizontal structure at different spatial scales. Given the goal to test 
the upscaling of UAV-LiDAR to coarser and larger area satellite-based remote sensing, we 
generated a suite of structural metrics at 20 m resolution to match the SAR and SR data exactly on 
a per-pixel basis (Figure 6). For each pixel in the SAR and SR datasets, structural metrics were 
calculated in R using the lidR package (Roussel et al., 2020) from the height normalised UAV-LiDAR 
tiles. A total of 23 metrics were calculated (Table 2) with a spatial resolution of 20 m to align 
exactly on a per-pixel basis with the SAR and SR explanatory variables. A subset of these is shown 
for one site in Figure 7. 

 

 
Figure 6 – Examples of the point cloud data contained within 20 m ‘pixels’, showing the range of structures that are integrated 
into each SAR and SR pixel. 
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Table 2 – LiDAR structural metrics evaluated for correlations with SAR and used as dependent variables for modelling vegetation 
structure. All metrics were calculated with a spatial resolution of 20 m. 

Metric short name Units Descrip-on 
GFP ProporNon Gap FracNon Probability (GFP) 
PAI m2 m−2 Plant Area Index (PAI) 
stdev m Standard deviaNon of the height of all non-ground returns 
p05 m 5th percenNle height of all non-ground returns 
p10 m 10th percenNle height of all non-ground returns 
p25 m 25th percenNle height of all non-ground returns 
p50 m 50th percenNle height of all non-ground returns 
p75 m 75th percenNle height of all non-ground returns 
p90 m 90th percenNle height of all non-ground returns 
p95 m 95th percenNle height of all non-ground returns 
p98 m 98th percenNle height of all non-ground returns 
dens_0_1m ProporNon Number of non-ground returns from 0 to 1 m / total number of returns 
dens_1_2m ProporNon Number of non-ground returns from 1 to 2 m / total number of returns 
dens_2_3m ProporNon Number of non-ground returns from 2 to 3 m / total number of returns 
dens_3_4m ProporNon Number of non-ground returns from 3 to 4 m / total number of returns 
dens_4_5m ProporNon Number of non-ground returns from 4 to 5 m / total number of returns 
dens_5_10m ProporNon Number of non-ground returns from 5 to 10 m / total number of returns 
dens_10_15m ProporNon Number of non-ground returns from 10 to 15 m / total number of returns 
dens_15_20m ProporNon Number of non-ground returns from 15 to 20 m / total number of returns 
dens_20_25m ProporNon Number of non-ground returns from 20 to 25 m / total number of returns 
dens_>1m ProporNon Number of non-ground returns > 1 m / total number of returns 
dens_>2m ProporNon Number of non-ground returns > 2 m / total number of returns 
dens_total ProporNon Number of non-ground returns / total number of returns 

 



14  |  CSIRO Australia’s National Science Agency 

 
Figure 7 – Derivation of structural metrics from UAV-LiDAR at a single site. (a) Canopy height from the normalised point-cloud. 
Examples of metrics computed to match the 20 m pixels of the spaceborne imagery: (b) 98th percentile height, (c) GFP, (d) PAI, 
(e) std, and (f) density 5-10m. 
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4.2 Explanatory variables and spatial sampling 

The SAR and SR datasets described in Section 3.3 and 3.4 were used as explanatory variables in 
our analysis. A regular spatial sample (i.e., where point samples are evenly distributed in a grid 
pattern) was taken by sampling every third pixel across the 20 m UAV-LiDAR structural metric 
grids, followed by a random jitter of up to 20 m in each horizontal axis. This sampling strategy 
provided near-complete spatial coverage of the UAV-LiDAR structural metric extents, while 
incorporating randomisation that would not lead to overlapping samples. These processes 
resulted in a total of 2,923 samples of the UAV-LiDAR structural metric values. 

A series of explanatory variables representing annual (‘Ann’), seasonal (‘Seas’), late dry season  
(September to November, ‘DrySeas’) and conditions during the month of LiDAR acquisition 
(‘MonthAqn’), in addition to inter-seasonal variability (‘Var’), were calculated using the EASI SAR 
and Sentinel-2A and 2B SR imagery described in Sections 3.3 and 3.4. Seasons were defined as 
Austral winter from 1st June to 31st August (dry season), Austral spring from 1st September to 30th 
November (dry season), Austral summer from 1st December to 28th/29th February (wet season), 
and Austral autumn from 1st March to 31st May (wet season). Composite images for each 
aggregation period were summarised using the median of VV and VH backscatter intensity, and 
their ratio (VV:VH, calculated as VV – VH for dB which is on a log scale) for SAR, and geometric 
median of the 10 spectral bands described in Table 1 for SR. Inter-seasonal variability was 
calculated as the standard deviation of seasonal values for each variable. Each of the explanatory 
variables were extracted at all the sample locations for subsequent analyses.  

 

4.3 Correlations between UAV-LiDAR structural metrics and satellite 
remote sensing 

Correlations between SAR variables and UAV-LiDAR structural metrics were calculated for 
different compositing periods, including one year, each season, and the primary month of UAV-
LiDAR acquisition using Spearman’s rank-based correlation coefficient, which is robust to non-
linear monotonic (i.e., as one variable increases or decreases, the other variable consistently 
moves in the same direction) relationships. The resulting correlations were assessed to explore the 
potential explanatory power of SAR for predicting structural metrics at different times of the year, 
when seasonal phenology or environmental conditions (e.g., soil moisture) could potentially 
impact upon the accuracy of predictive models. Pairwise correlations between UAV-LiDAR metrics 
were also calculated to quantify how each of the structural metrics relate to one another (see 
Appendix 2). All correlation analyses were conducted using the samples described in Section 4.2. 

 

4.4 Predictive modelling with quantile regression forests 

Predictive models of UAV-LiDAR structural attributes were fitted using quantile regression forests 
(Meinshausen, 2006), which use a series of regression trees (Breiman et al., 2017) to predict the 
conditional quantiles of the response variable. This enables quantification of the expected 
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response in addition to prediction intervals that can be used to quantify uncertainty. Furthermore, 
this algorithm is robust to overfitting (i.e., by fitting trees to random subsets of data and 
variables), can represent non-linear responses and variable interactions (i.e., by using an ensemble 
and allowing variable responses in different parts of the covariate domain), and has demonstrated 
strong predictive performance across many applications.    

Quantile regression forests were fitted in R using the ranger package (Wright & Ziegler, 2017). The 
model training set was developed by selecting 70% of the sample data (see Section 4.2), and the 
remaining 30% of sample data were held out for model validation. The training set was further 
split into 10 cross-validation folds for optimising model parameters (i.e., mtry: the number of 
variables per split in the tree, and min_n: the minimum number of samples for tree splitting to 
occur). These parameters were selected by running a grid-search for the optimal values, which 
involved iteratively running the 10-fold cross-validation for each model with 20 different random 
combinations of mtry (from 1 to the number of explanatory variables) and min_n (from 1 to 30). 
Each model was fitted with 250 trees. The data used for training, validation, and cross-validation 
was partitioned such the original distribution of UAV-LiDAR density greater than 1 m (‘dens_>1m’) 
was maintained. This ensured that the quantiles across sub-samples remained similar, thus 
mitigating the potential for this step to introduce bias.  

UAV-LiDAR structural metrics were first modelled using the SAR explanatory variables. A total of 
26,400 quantile regression forests were fitted to enable selection of the best performing approach 
(22 UAV-LiDAR structural metrics x 6 alternative sets of explanatory variables (i.e., ‘Ann’, ‘AnnVar’, 
‘Seas’, ‘SeasVar’, ‘DrySeas’, ‘MonthAqn’; see Section 4.2) x 10 cross-validation folds x 20 
parameter combinations). The best performing model was selected by minimising the cross-
validated root mean squared error (RMSE) for each UAV-LiDAR structural metric. The final models 
were fitted with all training data, and evaluated using the validation set (i.e., 30% of the sample 
data). The additional contribution provided by SR variables was then tested by repeating this 
procedure using the same set of explanatory variables identified as optimal by the SAR modelling 
results (e.g., annual, seasonal or monthly composites, with or without variability). An additional 
4,400 models were fitted when incorporating SR (22 UAV-LiDAR structural metrics x 10 cross-
validation folds x 20 parameter combinations).   
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5 Study results 

5.1 Correlations between LiDAR structural metrics and SAR 

The correlation between UAV-LiDAR structural metrics and SAR explanatory variables for annual, 
seasonal, and the primary month of acquisition temporal aggregation periods are reported in 
Figure 9. When statistically significant relationships were detected, all structural metrics, except 
for the Gap Fraction Probability (‘GFP’) and density below 1 m (‘dens_<1m’), were positively 
correlated with VV and VH backscatter intensity and negatively correlated with their ratio 
(VV:VH),. This trend was consistent across all aggregation periods. UAV-LiDAR structural metrics 
were also typically more strongly correlated with VH backscatter intensity, which is known to be 
sensitive to volumetric scattering in the plant canopy, than with VV. 

From a temporal perspective, the strongest correlations between UAV-LiDAR structural metrics 
and SAR were found late in the dry season (Figure 9c, Figure 9b), when there is less water present 
in the landscape that would otherwise introduce noise by increasing backscatter intensity.  

 
Figure 8 – Scatterplots of the relationship between VH backscatter and (a) Gap Fraction Probability (GFP), (b) Plant Area Index 
(PAI), (c) 75th percentile height (p75) and (d) density above 1 m height (n = 2,923).  
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Figure 9 - Pairwise correlations between SAR (y-axes) and LiDAR (x-axes) variables for (a) annual, (b) austral winter, (c) austral 
spring, (d) austral summer, (e) austral autumn, and (f) month of LiDAR acquisition median compositing periods. All comparisons 
were conducted on a randomised spatial sample of point locations (n = 2,923) using Spearman’s rank-based correlation 
coefficient (rho). Non-significant (p ≥ 0.05) correlations are not reported (grey cells).   
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Figure 10 - Absolute difference in pairwise correlations between SAR (y-axes) and LiDAR (x-axes) variables for (a) austral winter, 
(b) austral spring, (c) austral summer, (d) austral autumn, and (e) month of LiDAR acquisition in comparison to annual median 
compositing periods (i.e., blue values indicate better correlations with lidar variables than the annual composite). All 
comparisons were conducted on a randomised spatial sample of point locations (n = 2,923) using Spearman’s rank-based 
correlation coefficient (rho). Non-significant (p ≥ 0.05) correlations are not reported (grey cells).   
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5.2 Predictive modelling of UAV-LiDAR structural metrics 

5.2.1 Predictive modelling with SAR variables 

Cross-validated statistical performance for quantile regression forest models of UAV-LiDAR 
structural metrics fitted with SAR explanatory variables (see Section 4.2) are presented in Figure 
11. Note that high values of Lin’s Concordance Correlation Coefficient, and low values of RMSE / 
standard deviation indicate stronger performance. The Plant Area Index (PAI), Gap Fraction 
Probability (GFP), 75th percentile height (p75), and density above 1 or 2 m height (dens_>1m, 
dens_>2m) were the best performing structural metrics. Explanatory variables that quantified how 
conditions vary throughout the year provided the best predictions of UAV-LiDAR structural 
metrics. These included ‘SeasVar’ (i.e., median backscatter for all seasons and standard deviation 
across seasons), ‘Seas’ (i.e., median backscatter for all seasons), and ‘AnnVar’ (i.e., median 
backscatter for a whole year, and standard deviation across seasons). Despite dry season imagery 
typically performing better than the median backscatter intensity over a full year, the inclusion of 
variability and data for additional seasons further improved statistical performance.  

 

 
Figure 11 – Cross validated (a) Lin’s Concordance Correlation Coefficient and (b) root mean squared error (RMSE) / mean for 
predictive models (quantile regression forests) of LiDAR structural metrics (x-axes) using SAR variables (y-axes). Statistics were 
calculated using 10-fold cross-validation on 70% of samples selected for model training (n = 2,043).  
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The statistical performance of the validation set was typically consistent with the cross-validation 
analyses (Table 3), indicating that the models were not overfitted and predictions remained stable 
when applied to new data. The ‘Seas’ and ‘SeasVar’ variables remained most performant in nearly 
all cases, except for the 10th percentile height (p10) which performed poorly and was unlikely to 
produce reliable predictions. Height models performed best at the 75th percentile, with 
diminishing performance when predicting higher or lower parts of the distribution. This result is 
potentially due to: (i) the canopy penetration capacity of the C-band, and (ii) the strong correlation 
between density and height that can be observed both in the UAV-LiDAR structural metrics and 
correlation tests on our fitted models (Figure 20, Figure 21c). Similarly, density metrics were best 
predicted when modelling an aggregated representation of the vertical profile (‘dens_>1m’, 
‘dens_>2m’). Scatterplots of observed and validation predictions are illustrated for select 
structural metrics in Figure 12. 

 

 

Table 3 – Validation statistics for held-out point locations (n = 880) and optimised parameters (mtry, min_n) for predictive 
models of LiDAR structural metrics using SAR variables. Specific statistics reported are the coefficient of determination (R2), Lin’s 
Concordance Correlation Coefficient (CCC), root mean squared error (RMSE), bias (mean error) and the mean value of the 
observations (Mean).   

Lidar variable 
(units) 

Model type Variables 
per split 

(mtry) 

Minimum 
node size 

(min_n) 

R2 CCC RMSE Bias Mean 

GFP SeasVar_SAR_20m 2 3 0.52 0.68 0.02 0.00 0.96 
PAI (m2 m−2) SeasVar_SAR_20m 1 11 0.65 0.78 0.35 0.00 0.74 
stdev (m) Seas_SAR_20m 2 9 0.53 0.68 0.73 0.01 2.64 
p05 (m) Seas_SAR_20m 1 6 0.22 0.46 0.07 0.01 -0.09 
p10 (m) Ann_SAR_20m 1 6 0.06 0.22 0.09 0.02 -0.06 
p25 (m) SeasVar_SAR_20m 1 5 0.09 0.24 0.35 0.03 0.06 
p50 (m) SeasVar_SAR_20m 1 7 0.54 0.70 1.05 0.06 1.08 
p75 (m) Seas_SAR_20m 2 13 0.63 0.77 1.70 0.02 3.59 
p90 (m) Seas_SAR_20m 2 8 0.52 0.69 2.06 0.02 6.09 
p95 (m) Seas_SAR_20m 1 8 0.48 0.63 2.08 0.07 7.34 
p98 (m) SeasVar_SAR_20m 3 14 0.45 0.61 2.04 0.10 8.45 
dens_0_1m SeasVar_SAR_20m 2 15 0.63 0.77 0.08 0.00 0.33 
dens_1_2m Seas_SAR_20m 4 11 0.22 0.36 0.04 0.00 0.06 
dens_2_3m SeasVar_SAR_20m 6 3 0.42 0.57 0.04 0.00 0.05 
dens_3_4m Seas_SAR_20m 4 15 0.53 0.69 0.03 0.00 0.05 
dens_4_5m SeasVar_SAR_20m 2 11 0.52 0.69 0.03 0.00 0.04 
dens_5_10m Seas_SAR_20m 3 3 0.60 0.73 0.08 0.00 0.17 
dens_10_15m Seas_SAR_20m 1 8 0.26 0.40 0.04 0.00 0.03 
dens_15_20m SeasVar_SAR_20m 1 13 0.00 0.00 0.00 0.00 0.00 
dens_20_25m SeasVar_SAR_20m 1 15 0.00 0.00 0.00 0.00 0.00 
dens_>1m SeasVar_SAR_20m 2 9 0.66 0.79 0.11 0.00 0.40 
dens_>2m Seas_SAR_20m 2 14 0.68 0.81 0.11 0.00 0.34 
dens_total Seas_SAR_20m 1 14 0.37 0.53 0.07 0.00 0.73 
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Figure 12 – Observed versus predicted (a) Gap Fraction Probability (GFP), (b) Plant Area Index (PAI), (c) 75th percentile height 
(p75), and (c) density above 1 m height (dens_>1m) at held-out point locations (n = 880) when modelled using SAR variables. The 
red dashed line shows the 1:1 relationship between observed and predicted values. Model names are specified above each plot. 
Lin’s Concordance Correlation Coefficient (CCC) is reported in the top left corner of each subplot. 
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5.2.2 Predictive modelling with both SAR and SR variables 

 

Statistical performance of the LiDAR structural metrics fitted with both SAR and surface 
reflectance (SR) explanatory variables are presented in Table 4. The relative performance of these 
models was consistent with the SAR only approach for each of the structural metrics. While these 
models included many more explanatory variables (see Table 1) with the addition of SR, they 
increased predictive performance by up to 0.2 for Lin’s CCC relative to the SAR only models. This 
improved accuracy is evident in the scatterplots of observed and validation predictions for select 
structural metrics illustrated in Figure 13. 

 
Table 4 – Validation statistics for held-out point locations (n = 880) and optimised parameters (mtry, min_n) for predictive 
models of LiDAR structural metrics using both SAR and SR variables. Specific statistics reported are the coefficient of 
determination (R2), Lin’s Concordance Correlation Coefficient (CCC), root mean squared error (RMSE), bias (mean error) and the 
mean value of the observations (Mean).   

Lidar variable 
(units) 

Model type Variables 
per split 

(mtry) 

Minimum 
node size 

(min_n) 

R2 CCC RMSE Bias Mean 

GFP Seas_SARSR_20m 22 8 0.62 0.76 0.02 0.00 0.96 
PAI (m2 m−2) SeasVar_SARSR_20m 11 11 0.75 0.86 0.29 0.01 0.74 
stdev (m) SeasVar_SARSR_20m 15 6 0.69 0.81 0.59 0.03 2.64 
p05 (m) Seas_SARSR_20m 1 10 0.26 0.49 0.07 0.02 -0.09 
p10 (m) SeasVar_SARSR_20m 1 10 0.13 0.26 0.11 0.04 -0.06 
p25 (m) Seas_SARSR_20m 1 6 0.15 0.33 0.34 0.04 0.06 
p50 (m) SeasVar_SARSR_20m 3 13 0.67 0.81 0.89 0.10 1.08 
p75 (m) SeasVar_SARSR_20m 9 8 0.77 0.87 1.36 0.09 3.59 
p90 (m) SeasVar_SARSR_20m 8 8 0.67 0.81 1.70 0.07 6.09 
p95 (m) SeasVar_SARSR_20m 5 5 0.62 0.76 1.76 0.13 7.34 
p98 (m) Seas_SARSR_20m 7 10 0.57 0.72 1.79 0.16 8.45 
dens_0_1m SeasVar_SARSR_20m 18 8 0.74 0.85 0.07 0.00 0.33 
dens_1_2m Seas_SARSR_20m 18 4 0.43 0.56 0.03 0.00 0.06 
dens_2_3m SeasVar_SARSR_20m 24 5 0.62 0.72 0.03 0.00 0.05 
dens_3_4m SeasVar_SARSR_20m 13 9 0.65 0.77 0.03 0.00 0.05 
dens_4_5m SeasVar_SARSR_20m 7 4 0.63 0.76 0.02 0.00 0.04 
dens_5_10m Seas_SARSR_20m 11 5 0.71 0.82 0.07 0.00 0.17 
dens_10_15m SeasVar_SARSR_20m 11 2 0.42 0.59 0.03 0.00 0.03 
dens_15_20m SeasVar_SARSR_20m 1 7 0.00 -0.01 0.00 0.00 0.00 
dens_20_25m SeasVar_SARSR_20m 1 10 0.00 0.00 0.00 0.00 0.00 
dens_>1m Seas_SARSR_20m 19 12 0.80 0.89 0.08 0.00 0.40 
dens_>2m Seas_SARSR_20m 18 8 0.81 0.89 0.09 0.00 0.34 
dens_total Seas_SARSR_20m 12 14 0.52 0.68 0.06 0.00 0.73 
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Figure 13 – Observed versus predicted (a) Gap Fraction Probability (GFP), (b) Plant Area Index (PAI), (c) 75th percentile height 
(p75), and (c) density above 1 m height (dens_>1m) at held-out point locations (n = 880) when modelled using both SAR and SR 
variables. The red dashed line shows the 1:1 relationship between observed and predicted values. Model names are specified 
above each plot. Lin’s Concordance Correlation Coefficient (CCC) is reported in the top left corner of each subplot. 
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5.3 Extrapolating predictions of vegetation 3D structure over a larger 
extent  

Spatial predictions of the Gap Fraction Probability (GFP), Plant Area Index (PAI) and density above 
1 m (dens_>1m) are illustrated in Figure 14, Figure 15, Figure 16, alongside the prediction intervals 
given by the quantile regression forests and comparisons against the SAR only alternatives. The 
prediction intervals (i.e., Figure 14b, Figure 15b, Figure 16b) can be used to assess areas with the 
highest predictive uncertainty, and can be used to help guide the collection of additional training 
data by targeting specific features where the model is uncertain. These prediction intervals may 
also be compared against alternative models to explore the range of uncertainty remaining when 
applying different modelling approaches. The addition of SR as explanatory variables considerably 
decreased the range of uncertainty present in each model (Figure 14d, Figure 15d, Figure 16d). 
This is likely due to the additional information provided by the multi-spectral imagery that 
improves the distinction between dense and more sparsely vegetated parts of the landscape, as is 
visible in the differences shown in Figure 14c, Figure 15c, and Figure 16c. 

 
Figure 14 – Modelled (a) Gap Fraction Probability (GFP), (b) width of the GFP prediction interval (PI), (c) difference in modelled 
GFP when using surface reflectance (SR) in addition to SAR for prediction, and (d) difference in the prediction interval width 
when using both SR and SAR for prediction (blue indicates reduced uncertainty). Q10, Q50 and Q90 represent the 10th, 50th and 
90th percentile of predictions, respectively. Model names and their order for the purposes of calculating differences are specified 
above each plot. 
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Figure 15 – Modelled (a) Plant Area Index (PAI), (b) width of the PAI prediction interval (PI), (c) difference in modelled PAI when 
using surface reflectance (SR) in addition to SAR for prediction, and (d) difference in the prediction interval width when using 
both SR and SAR for prediction (blue indicates reduced uncertainty). Q10, Q50 and Q90 represent the 10th, 50th and 90th 
percentile of predictions, respectively. Model names and their order for the purposes of calculating differences are specified 
above each plot. 
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Figure 16 - Modelled (a) return density above 1 m (dens_>1m), (b) width of the prediction interval (PI) for density above 1 m, (c) 
difference in modelled density above 1 m when using surface reflectance (SR) in addition to SAR for prediction, and (d) 
difference in the prediction interval width when using both SR and SAR for prediction (blue indicates reduced uncertainty). Q10, 
Q50 and Q90 represent the 10th, 50th and 90th percentile of predictions, respectively. Model names and their order for the 
purposes of calculating differences are specified above each plot. 
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5.4 Quantifying temporal dynamics 

 

The models calibrated using data from 01/06/2023 to 31/05/2024 were then applied to imagery 
from previous years to evaluate changes in vegetation 3D structural metrics over time. The 
changes in Plant Area Index (PAI) and density above 1 m (‘dens_>1m’) are illustrated in Figure 17. 
The trends observed indicate that vegetation cover has increased since 2019 (Figure 17e,f). Note 
that while the uncertainty bands are wide (i.e., red shading), these values are calculated across the 
whole scene and should be interpreted carefully, as they reflect the uncertainty in the model 
predictions from the calibrated models, and therefore are influenced by the training data used. 
While increases in vegetation structural metrics are observed across the majority of the study 
region, there is a smaller region in the centre of the study region (i.e., red pixels in Figure 17c,d) 
where decreases were observed.   

Further investigation of these areas (see subset regions in Figure 18) shows varying patterns of 
decrease in vegetation density. For example, between 2019 and 2021 there are increases in 
vegetation structural attributes (Figure 18c,e) associated with growth over exposed soils (Figure 
18a), and disturbances (i.e., reduced structure) that display a response to existing roads and 
infrastructure in the region. Low to moderate changes in vegetation cover are observed across the 
study region between 2022 and 2024, with strong decreases clearly observable where vegetation 
has been cleared for roads and development infrastructure. Time-series plots at three different 
point locations demonstrate the ability of the predictive models to track changes in vegetation 
structure over time on a per-pixel basis, with quantified uncertainty (Figure 19).   
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Figure 17 – Modelled predictions of (a) PAI and (b) density above 1 m height for year beginning 01/June/2024, the difference in 
(c) PAI and (d) density above 1 m height since the year beginning 01/June/2019, and the annual trend in mean (e) PAI and (f) 
density above 1 m height calculated across the whole study region. The decrease in PAI and density above 1 m height (c, d) is 
associated with development activity, including roadworks. Red shading (e, f) shows the prediction interval given by the 10th and 
90th percentile. 
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Figure 18 – Visualisation of change in density above 1 m (dens_>1m) over time in a subset of the study region. Images show 
annual RGB composites for (a) the year beginning 01/June/2019 and (e) year beginning 01/June/2023, return density above 1 m 
height for (b) the year beginning 01/June/2019 and (f) year beginning 01/June/2019, and change in density above 1 m between 
(c) 01/June/2019 and 31/May/2021, and (d) 01/June/2022 and 31/May/2024. 
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Figure 19 – Time-series of Plant Area Index (PAI) and density above 1 m height (dens_>1m) at (a) three point locations where 
vegetation cover (b, c) decreases, (d, e) remains stable, and (f, g) increases. Red shading shows the prediction interval given by 
the 10th and 90th percentile.     
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6 Outlook for large area structural monitoring 

6.1 Key findings from this study 

This study has shown that key attributes of vegetation 3D structure in the Beetaloo region can be 
mapped at scale with open-source satellite imagery and processing tools.  Vertical and horizontal 
components of woody vegetation, as quantified from UAV-LiDAR, were strongly correlated with 
imagery from spaceborne sensors at 20 m resolution. The strength of these relationships varied 
with time of year, being stronger in the dry season months than in the wet season months. These 
findings lay the foundation for systematic on-going monitoring of vegetation structure over the 
broader region. 

Gap Fraction Proportion (GFP), Plant Area Index (PAI), canopy density (dens_>1m), 75th percentile 
height (p75), and standard deviation of height (std) were among the best performing metrics in 
our predictive models. Combined, these five variables provide a comprehensive representation of 
vegetation 3D structure. The dens_>1m metric used here is derived from the same equation used 
by Fisher et al. (2020) for their the dall  metric, which was well correlated with field-measured 
canopy data across diverse vegetation types in Australia. The ability to detect the mere presence 
of woody vegetation is the first step in monitoring its extent, but the ability to map patterns in gap 
fraction and leaf area distribution over large area provides an avenue for understanding changes 
in condition. Vegetation height is a fundamental ecological attribute, and whilst maximum canopy 
height can be mapped with cm accuracy and precision from UAV-LiDAR (Bohn Reckziegel et al., 
2025), our satellite-based predictions at 20 m resolution were most reliable for the 75th percentile 
height (CCC = 0.87). Models of the higher height percentiles (90th, 95th, 98th) did not perform as 
well (CCC = 0.72-0.76) but this dampening effect on height is to be expected when pixel sizes 
exceed the diameter of typical trees in the landscape. 

Seasonal metrics performed best in our models, with the dry season months providing the 
strongest correlations with the UAV-LiDAR metrics. Sentinel-1 and Sentinel-2 data are collected 
systematically across Australia, with a cadence of 12 and 10 days respectively. These frequent 
revisit times enable flexibility in the temporal compositing of imagery, and deciding on the most 
appropriate compositing window depends upon the desired application. Over the five years’ worth 
of data included in our analysis, the dry season months provides a more stable baseline for the 
SAR characterisation of vegetation structure, by avoiding scattering effects of saturated soils and 
standing water in the landscape. These months were also optimal from a multispectral optical 
perspective, as the contrast between dry herbaceous material and evergreen woody canopies was 
most pronounced. Important to note however is that late dry season imagery can be subject to 
large fire scars and smoke interference. Annual composites with measures of intra-annual 
variability also performed very well, and could provide a more stable avenue for assessing change 
when infrequent processes like fires or floods are present in the landscape. Models built upon 
annual composites and measures of intra-annual variability are also likely to be more transferable 
to regions with different rainfall seasonal patterns. 
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The fusion of SAR (Sentinel-1) and SR (Sentinel-2) performed better than SAR alone. The SAR only 
models performed well for multiple structural metrics, but the extra dimensionality added by the 
multi-spectral sensor improved accuracy and reduced bias in the spatial predictions.  

A limitation of this study is one that is inherent to UAV remote sensing as a whole – spatial extent. 
UAV systems offer good flexibility, but they are typically operated over much smaller spatial 
extents than crewed aircraft, due to technical (battery life) and regulatory (line of sight) 
restrictions. The Acecore NOA hexacopter with Riegl VUX-120 system used in this study is at the 
forefront of commercially available systems, with class leading coverage and data quality. 
Nonetheless, the training and validation of our models was based on a spatially concentrated 
1,000 ha of point-cloud data. Whilst this coverage did span good variation in canopy density and 
vegetation types that are representative of the region, it was geographically focused to the 
southern side of the Carpentaria highway. This concentration of data collection was not by design 
but arose through access limitations imposed by highway roadworks and wet season flooding. The 
density and precision of the UAV-LiDAR point-clouds used in this study exceeds what can achieved 
from traditional airborne laser scanning (ALS), and approximates the quality obtained from 
terrestrial laser scanning (TLS) (Bohn Reckziegel et al., 2025). As such there is a trade-off between 
data quality and quantity that needs to be balanced, and we prioritised quality so that we could 
fully explore the relationships between UAV-LiDAR structural metrics and the satellite data 
products. The spatial extrapolation of metrics to larger areas was a secondary objective.  

6.2 Future directions 

The interpretation of radar imagery presented in this study relies on temporal aggregation of 
imagery products at seasonal scales. Given the non-stationarity and the importance of major 
planetary climate patterns affecting Australia (ENSO, SAM and IOD), seasonal amplitude and 
timing of temperature and precipitation can be highly variable every year even when considering 
similar seasons. Hence seasonal aggregation, based on fixed periods of several months, might not 
be representative of the extreme contrasts between dry and wet seasons. Processing of full, multi-
year time-series (Figure 18) allows identifying how the radar response fluctuates inter-annually. 
Comparing these fluctuations with data reflecting the availability of water to plants such as GRACE 
data (Figure 18a) allows understanding how the vegetation reacts to water abundance or scarcity. 
We note, for example, a decrease of InSAR coherence of +/- 0.4 (Figure 18b) and a synchronous 
increase of +/- 3 dB radar backscatter intensity in both VV and VH bands (Figure 18c) during dry 
periods (Figure 18a). As soil moisture tends to impact VV and VH similarly, the use of band 
combinations such as the VH/VV ratio and the Radar Vegetation Index (RVI; based on the same 
bands) decreases the influence of bare soils and moisture, making them particularly suitable for 
vegetation monitoring applications (Figure 18d). Finally, the use of long time-series along with in 
situ measurement or LiDAR-derived vegetation metrics allows understanding the normal variation 
of the radar backscatter over healthy vegetation populations. This is a critical step for identifying 
deviations from the normal dynamics of vegetation structures, such as the effects of fires or 
dieback events related to floods, pests or droughts.  
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Figure 18 – Changes in the water storage across the landscape and subsurface from GRACE-FO data (changes in Terrestrial Water 
Storage, or ΔTWS, in cm of Water Thickness Equivalent; A), 15-m resolution InSAR coherence time-series using all possible 
Sentinel-1 image pairs separated by 12 days (B), 15-m resolution VV-VH amplitude time-series (C), VH/VV intensity ratios and 
RVI (D) over a location covered with Lancewood (Lon/Lat: 133.569961/-16.297862). 

6.3 Conclusion 

This study has shown that key structural attributes of vegetation communities can be modelled 
with Sentinel-1 SAR imagery, and that predictive performance is improved through the inclusion of 
Sentinel-2 multi-spectral imagery. Time-series analysis of the Sentinel-1/-2 archive can support 
large-scale, automated vegetation structure monitoring applications, and model uncertainty can 
be reduced through the inclusion of additional LiDAR-based calibration and validation datasets. 
Fusion of Sentinel-1 with longer-wavelength SAR sensors, such as the recently launched P-band 
BIOMASS mission (European Space Agency), and the upcoming L-band NISAR mission (NASA/JPL), 
will likely improve the characterisation of vegetation 3D structural attributes even further, 
providing greater confidence in the assessment of changes that might impact biodiversity. 
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8 Appendix 1 

8.1 Additional datasets and processing steps 

8.1.1 Interferometric radar coherence processing  

Interferometric radar coherence, or InSAR coherence, is a radar imagery product that combines 
both the like-polarised band intensity (VV) and the phase information (Zebker & Villasenor, 1992). 
This similarity index aims at understanding if changes occurred in the ground targets which 
dominates the radar backscatter during the time interval between a pair of radar images. It ranges 
from 0 to 1, with 0 being allocated to areas of important changes, and 1 being allocated to areas 
were the phase and intensity information are identical between the two images of the pair. 
Vegetated areas typically show low to medium coherence, as movement and growth of the leaf, 
branch and canopy structures constantly changes the scattering mechanisms and the phase value 
recorded by the sensor. While InSAR coherence was initially developed to select areas where the 
phase information was sufficiently stable to be used for ground deformation mapping, it has been 
recently identified as having value for vegetation mapping purposes (Castellazzi et al., 2019, 2024; 
Villarroya-Carpio et al., 2022).  

The GRD Sentinel-1 products are not suitable for creating InSAR coherence products, as the phase 
information is discarded in such format. Instead, the Single Look Complex (SLC) data format is 
used. It preserves both amplitude and phase information, allowing production of both intensity 
and coherence imagery products. This data type requires more processing steps and besides the 
possibility of producing coherence images, it also allows more flexibility for generating intensity 
products at different resolutions or with advanced filters.   

The coherence time-series were generated using SARSCAPE 6.1, processing steps included: co-
registration of each image pair, multilooking, coherence computation, resampling and projection 
on a 15-m resolution grid. Only pair separated by 12 days were processed, to maximise sensibility 
to vegetation and form a consistent dataset uninfluenced by varying temporal baselines. To 
visualise how the coherence changes over time, and for simplification, the date corresponding to 
each coherence image was set as the centroid of the two acquisition dates used to form the image 
pair. 

8.1.2 GRACE data retrieval and processing steps 

The Gravity Recovery And Climate Experiment (GRACE) missions have been measuring the 
variations of the Earth’s gravity field since 2002. The system comprises two satellites on the same 
low-altitude orbital track (~400 km), distant by approximately 200 km. Earth’s gravity field affects 
the acceleration of the satellites. The first satellite on the orbital track is affected first while flying 
over a mass anomaly, the second is affected after a short time-delay. By tracking the changes of 
distance between the two satellites, the Earth’s gravity field is measured. A highly precise ranging 
system retrieves that variation, which is inverted into gravity data during post-processing. The first 



  |  39 

GRACE mission ended in 2017, the GRACE-Follow-On (GRACE-FO) mission was operational a year 
later and is still acquiring to this date.  

While this sensing system does not show major advantages in mapping the gravity field, it offers 
the unique capability to precisely track its variations over time. Such temporal changes, at the 
timescales of days to decades, are mostly related to the constant changes in the spatial 
distribution of water masses on Earth (Tapley et al., 2004), in the oceans and on land, at the 
surface (glaciers, lakes, rivers) and within the sub-surface (vadose zone, aquifers). GRACE is the 
remote-sensing water monitoring system that is directly volumetric. It requires no calibration, as 
the relation between gravity, masses and volumes are direct. 

GRACE data is expressed in Water Thickness Equivalents (WTE) and represents the aggregation of 
all changes of water masses occurring below and around the orbital track in reference to past data 
acquisitions. It is referred to as Total, or Terrestrial Water Storage Change (ΔTWS) data. A 
decomposition strategy, accounting for the water masses occurring over a study area, is often 
performed to separate the water storage changes of a specific contributor (e.g. a large lake, an 
aquifer etc. – e.g. Castellazzi et al. (2024)). This strategy requires auxiliary data and is highly 
dependent on data availability, both in situ and from modelling.  

To translate the GRACE measurements along its flight track into usable data expressed in WTE, the 
data must be processed. Several GRACE data processing approaches, or ‘solutions’ exist. They all 
rely on different spatial and temporal aggregation of the original GRACE measurements along its 
orbital track. They also rely on different approaches to filter noise patterns. For this study, we 
used the GRGS 10-days GRACE solution from GRGS (Lemoine, 2023). While most GRACE processing 
centres provide monthly GRACE data, this one is also available at a 10-days frequency, which 
conveniently matches the temporal frequency of Sentinel-1 and 2 over Australia (12 and 10 days, 
respectively). 

The ’Future Directions’ section of this study uses GRACE data to help interpreting time-series of 
radar backscatter and InSAR coherence. Because radar products are affected by soil moisture, 
vegetation moisture, and presence of water on the ground, an understanding of the water 
accumulated in the landscape is useful for interpretation. It is important to keep in mind that 
GRACE data are low resolution (hundreds of kilometres) and represent regional conditions. It does 
not represent the conditions specific to the location of radar, optical or UAV-LiDAR data 
acquisitions presented in this study. 
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9 Appendix 2 

9.1 Supporting figures  

 

 
Figure 20 - Pairwise correlations between LiDAR structural metrics. All comparisons were conducted on a randomised spatial 
sample of point locations (n = 2,923) using Spearman’s rank-based correlation coefficient (rho). Non-significant (p ≥ 0.05) 
correlations are not reported (grey cells).   
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Figure 21 – Scatterplots of spatial random samples (n = 15,000) of (a) Gap Fraction Probability (GFP) versus density above 1 m 
height (dens_>1m), (b) Plant Area Index (PAI) versus density above 1 m height, (c) 75th percentile height (p75) versus density 
above 1 m height, and (d) PAI versus GFP. Point samples were extracted from extrapolated predictions from models fitted using 
SAR and SR as explanatory variables. 
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