

GISERA W17 Environmental monitoring and microbial degradation of onshore shale gas activity chemicals and fluids Knowledge Transfer Session | Presenter: Dr David Midgley | 31/08/21

Nai Tran-Dinh, Carla Mariani, Richard Schinteie, Kaydy L. Pinetown, Se Gong, Tania J. Vergara, Paul Greenfield and David J. Midgley

Australia's National Science Agency

Objectives

- Establish microbial community baselines in aquifer waters and soil samples of sites proximal to prospective unconventional gas activities in the Northern Territory.
- 2. Understand the microbial degradation of a range of chemicals likely to be used in unconventional gas activities, in both the five major soil types of the region and in relevant aquifer environments.

Objectives

- Spills and leaks are rare. Multiple hurdles exist to prevent their occurrence.
- Microbial biodegradation offers an addition defence against environmental harm
- Understanding organisms that respond to chemicals provides additional indicators of leaks/spills.
- This study aimed to study soils and aquifers of NT Australia, to understand chemical
 - Biodegradation
 - Biodegrading organisms
 - Effects on microbial communities.

Chemicals	Additive role in onshore gas activities
2-aminoethanol	Viscosity management/ drilling additive
2-butoxyethanol	Surfactant
2-ethylhexanol	Surfactant
benzisothiazolinone	Biocide
bronopol	Biocide
c12 alcohol ethoxylate	Surfactant
diesel	Fuel
diethylene glycol ethyl ether	Solvent
d-limonene	Surfactant
eicosane	Surfactant
Hydrotreated light petroleum distillate	Fuel
ethylene glycol	Viscosity management
glutaraldehyde	Biocide
glyoxal	Viscosity management/ crosslinker
hexahydro-1,3,5-tris(2-hydroxyethyl)-sym-triazine	Biocide
isopropanol	Surfactant
methanol	Surfactant
methylchloroisothiazolinone	Biocide
methylisothiazolinone	Biocide
naphthalene	Corrosion inhibitor
o-cresol	Biocide
polyacrylamide	Friction reducer
polyoxypropylene diamine	Pipework/Epoxy resins/Hardener
pristane	Surfactant
propylene glycol	Viscosity management
triethanolamine	Viscosity management

Methods

Microcosm Experiments

Results: Baseline data

Water chemistry measurements obtained from 38 wells

In broad terms, samples were neutral to moderately alkaline. They varied in their EC (ranging from 650 to just over 2000 mgL⁻¹)

	Mean	Std	Min	Max
рН	7.5	0.18	7.21	8.03
EC	1291.0	344.19	650	2140
Total Alk.	368.4	43.08	263	453
SO4	137.7	88.49	1	347
CI-	137.9	82.58	7	378
Са	120.8	22.79	44	161
Mg	51.6	13.94	8	72
Na	99.7	64.70	9	302
К	14.6	8.57	1	35
Ва	0.1	0.15	0.018	0.833
Li	0.1	0.04	0.01	0.24
Sr	0.6	0.32	0.074	1.47
Zn	0.0	0.08	0.005	0.382
В	0.2	0.14	0.05	0.79
F-	0.6	0.31	0.2	1.7
NO2/NO3	0.5	0.84	0.01	2.77
Total N	0.6	0.87	0.1	3
DOC	1.9	1.47	1	7

Individuals - PCA

Dim1 (38.3%)

Dim1 (38.3%)

Soil chemistry measurements obtained from the bulk samples of chromosol, kandosol, rudosol, tenosol & vertosol.

In broad terms, soils varied from acidic (pH 5) to neutral (pH 7), the main drivers of variation are in metal (Al, Fe) content (tensol much lower than other soils).

	Mean	Std	Min	Max
pН	6.52	0.60	5.10	7.00
EC	37.80	15.42	18.00	72.00
Moisture	1.29	0.42	1.00	2.40
Si	827.47	215.55	505.00	1110.00
CI	160.00	50.71	100.00	200.00
Ca	12.00	4.14	10.00	20.00
Na	12.00	4.14	10.00	20.00
к	25.33	10.60	10.00	40.00
Al	5322.00	2320.49	2490.00	10300.00
Ва	64.67	51.81	20.00	150.00
Cr	51.60	22.80	8.00	82.00
Со	6.20	5.21	2.00	16.00
Cu	7.60	3.56	5.00	14.00
Fe	30686.00	16280.77	5940.00	57000.00
Pb	8.93	4.89	5.00	18.00
Mn	265.00	200.44	20.00	553.00
Ni	3.13	1.55	2.00	6.00
Sr	9.67	9.75	2.00	25.00
Va	79.53	39.25	16.00	134.00
U	0.69	0.48	0.10	1.40
F	68.00	52.40	40.00	180.00
NO2/NO3	8.33	7.09	1.80	21.10
Total N	364.00	224.17	120.00	720.00
Total P	182 67	107 56	96.00	409.00

Most comprehensive survey of aquifer microbiomes for the NT to date.

1467 OTUs detected across the 38 aquifer samples

- 31 different phyla detected
- 334 OTUs from unknown phyla

DNA yields poor. Low cell number in aquifers.

Diversity

319 \pm 15.9 OTUs per aquifer sample Max: 503 OTUs (RN029027) Min: 157 OTUs (RN031243)

Summary stats of the soil microbiomes

1251 OTUs detected across the soil samples

- 22 different phyla detected
- 191 OTUs from unknown phyla

Diversity 477 \pm 20.9 OTUs per soil sample Max: 713 OTUs (Vertosol-SV06) Min: 79 OTUs (Vertosol-SV02)

Thaumarchaeot	a ^{оти_37}	0	0	30	•		°(0	8	2	Ø			•)•	•		°		~	Q	þÇ	a	Ņ			. 7	.(20	8	
Acidobacteria	OTU_314 OTU_702 OTU_218 OTU_113	• • • •	88							Ċ									3				~			•					8	
Actinobacteria	OTU_354 OTU_101 OTU_255 OTU_115 OTU_181	8														000											•				•	
Bacteroidetes Chloroflexi Firmicutes Proteobacteria Verrucomicrobia	OTU_187 OTU_241 OTU_241 OTU_1 OTU_315 OTU_156	0000																	•							0		D .	0			
Novel Phyla	OTU_154 OTU_1643	0	• (00)			(•	8				¢	.?) ·	-		0	30	•	0			Q	Č		• •			•	
		Chromosol-SC01	Chromosol-SC02	Chromosol-SC03 Chromosol-SC04	Chromosol-SC05 Chromosol-SC06	Chromosol-SC07	Chromosol-SC08 Chromosol-SC09	Chromosol-SC10	Chromosol-SC11 Chromosol-SC12	Kandasol-SK01	Kandasol-SK02 Kandasol-SK03	Kandasol-SK04	Kandasol-SK06 Kandosol-SK06	Kandosol-SK07	Kandosol-SK11 Kandosol-SK12	Rudosol-SR01	Rudosol-SR02 Rurheol.SR04	Rudasol-SR05	Rudasol-SR06	Rudosol-SR07 Rudosol-SR08	Rudosol-SR09 Tenosol-ST01	Tenosol-ST02	Tenosol-ST03 Tenosol-ST04	Tenosal-ST07	Tenosol-S108	Tenosol-ST10 Vertnsol-SV01	Vertosol-SV02	Vertosol-SV03 Vertosol-SV04	Verlosol-SV05	Vertosol-SV08	Vertosol-SV09	

Effect of chemicals of potential concern (COPC)

Aquifers have slower rates of degradation than soils for tested chemicals.

Original dose **Butoxyethanol** Propylene glycol Ethylene glycol Isopropanol Proviette doct Their available berre-energy PUNCTUR Patronagen Tridea bora -15576^(B) PRIO3BUS ARAST 68 anationsh THE SECOND PERSONAL PROPERTY AND INC. or and the set on DA (SPA) ginal dist areastorio begin presi Thyler a give hand-me avai Cond bose PUIDERO Gronesol

Aquifers - COPC

			/	\		
	RN033	608	RN037	666	RN0409) 30
	pval	r	/ pval	r \	pval	r
2-aminoethanol	0.0021	0.902	0.0083	0.856	0.0145	0.772
C12 ethoxylated alcohol	ND	0.054	0.0025	0.796	0.0022	0.596
2-butoxyethanol	0.0287	-0.102	0.0398	0.635	0.0224	0.608
bronopol	0.0167	0.849	0.008	0.808	0.002	0.77
benzisothiazolinone	0.0018	-0.796	0.0017	0.762	0.0035	0.664
diethylene glycol ethyl ether	ND	0.265	0.0006	0.841	0.0007	0.576
d-limonene	0.0037	-0.63	0.0085	0.902	0.0057	0.328
diesel	0.0075	-0.705	0.0021	0.807	0.0027	0.388
eicosane (linear-C20)	0.0063	-0.351	0.0098	0.852	0.0027	0.331
ethylene glycol	0.0085	0.127	0.0008	0.836	0.0039	0.487
2-ethylhexanol	0.0126	-0.265	ND	0.696	0.0022	0.58
glutaraldehyde	0.0202	0.763	0.001	0.905	0.0057	0.641
glyoxal	0.0077	0.894	0.0069	0.96	0.0108	0.604
hydrotreated light petroleum distillate	ND	<mark>0.08</mark> 9	ND	-0.139	0.0018	0.354
, o, ,	0.0052	0.829	0.0097	0.892	0.0026	0.74
isonronanol	ND	-0 376	0.0275	0.885	0.0024	0.616
methylchloroisothiazolinone	ND	-0 196	0.004	0.858	0.0136	0.377
methylisothiazolinone	0.0071	0.716	0.0076	0.777	0.0037	0.654
methanol	ND	0.65	0.0081	0.732	0.0048	0.564
naphthalene	0.0194	0.293	0.0066	0.874	0.0022	0.61
2-methylphenol (o-cresol)	0.0081	0.273	0.0011	0.875	0.0049	0.591
polvacrylamide	ND	0.124	0.0017	0.944	0.0008	0.369
polyoxypropylenediamine	ND	0.66	0.0078	0.932	0.0007	0.279
propylene glycol	ND	0.799	0.0186	0.868	0.009	0.494
pristane (C15)	0.0353	0.514	0.0091	0.788	0.0023	0.466
triethanolamine	0.0088	0.619	0.0032	0.806	0.0023	0.562
				1		

Aquiter RN037666: zero time control (Permanova pval:0.0164 | Correlation to zero time r: 1.0)

Aquifers - COPC

	RN033608		RN037	666	RN040930		
	pval	r	pval	r	pval	r	
2-aminoethanol	0.0021	0.902	0.0083	0.856	0.0145	0.772	
C12 ethoxylated alcohol	ND	0.054	0.0025	0.796	0.0022	0.596	
2-butoxyethanol	0.0287	-0.102	0.0398	0.635	0.0224	0.608	
bronopol	0.0167	0.849	0.008	0.808	0.002	0.77	
benzisothiazolinone	0.0018	-0.796	0.0017	0.762	0.0035	0.664	
diethylene glycol ethyl ether	ND	0.265	0.0006	0.841	0.0007	0.576	
d-limonene	0.0037	-0.63	0.0085	0.902	0.0057	0.328	
diesel	0.0075	-0.705	0.0021	0.807	0.0027	0.388	
eicosane (linear-C20)	0.0063	-0.351	0.0098	0.852	0.0027	0.331	
ethylene glycol	0.0085	0.127	8000.0	0.836	0.0039	0.487	
2-ethylhexanol	0.0126	-0.265	ND	0.696	0.0022	0.58	
glutaraldehyde	0.0202	0.763	0.001	0.905	0.0057	0.641	
glyoxal	0.0077	0.894	0.0069	0.96	0.0108	0.604	
hydrotreated light petroleum distillate	ND	0.089	ND	-0.139	0.0018	0.354	
hexahydro-1,3,5-tris(2-hydroxyethyl)-sym-triazine	0.0052	0.829	0.0097	0.892	0.0026	0.74	
isopropanol	ND	-0.376	0.0275	0.885	0.0024	0.616	
methylchloroisothiazolinone	ND	-0.196	0.004	0.858	0.0136	0.377	
methylisothiazolinone	0.0071	0.716	0.0076	0.777	0.0037	0.654	
methanol	ND	0.65	0.0081	0.732	0.0048	0.564	
naphthalene	0.0194	0.293	0.0066	0.874	0.0022	0.61	
2-methylphenol (o-cresol)	0.0081	0.273	0.0011	0.875	0.0049	0.591	
polyacrylamide	ND	0.124	0.0017	0.944	0.0008	0.369	
polyoxypropylenediamine	ND	0.66	0.0078	0.932	0.0007	0.279	
propylene glycol	ND	0.799	0.0186	0.868	0.009	0.494	
pristane (C15)	0.0353	0.514	0.0091	0.788	0.0023	0.466	
triethanolamine	0.0088	0.619	0.0032	0.806	0.0023	0.562	

Aquiler RN037666: zero time control (Permanova pval:0.0164 | Correlation to zero time r: 1.0)

Aquiter RN037666: polyacrylamide (Permanova pval:0.0017 | Correlation to zero time r: 0.944)

RN037666

Aquifers - COPC

Aquifers - COPC

40

- 20

	Chromo	sol	Kando	Kandosol		sol	Tenc	sol
	pval	r	pval	r \	pval	r	pval	r
2-aminoethanol	0.0005	-0.316/	0.0016	0.638	0.0058	0.27	0.0005	-0.005
C12 ethoxylated alcohol	0.0261	0.612	0.008	0.268	0.0082	0.305	0.0005	0.194
2-butoxyethanol	0.0002	-0.605	0.002	-0.799	0.0002	0.595		
bronopol	0.0007	0.956	0.0032	0.94	q.0004	0.952	0.0073	0.311
benzisothiazolinone	0.0013	0.949	0.0026	0.762	00004	0.406	0.0112	0.315
diethylene glycol lethyl ether	ND	0.733	0.0031	-0.047	ND	0.647	0.045	-0.689
d-limonene	0.048	0.585	0.0148	-0.489	0.0411	0.324		
diesel	0.0002	0.634	0.0012	-0.32	0.0006	0.388		
eicosane (linear-C20)	0.0074	0.848	ND	-0.494	0.0011	0.581	0.0046	-0.341
ethylene glycol	0.0003	0.818	0.0019	-0.575	0.0011	0.182		
2-ethylhexanol	0.0025	-0.967	0.0025	-0.199	0.0013	0.39		
glutaraldehyde	0.0003	-0.816	0.0012	0.536	0.0009	0.15	0.0015	-0.173
glyoxal	0.0003	0.605	0.0089	-0.381	0.0006	0.821	0.0009	0.431
hydrotreated light petroleum								
distillate	0.0191	0.43	0.0066	-0.156	0.0414	0.425	0.0285	-0.376
hexahydro-1,3,5-tris(2-hydroxyethyl)-								
sym-triazine	0.0008	0,948	0.0015	0.398	0.0014	0.489	0.0013	0.192
isopropanol	0.0141	0 829	0.0155	-0.602	0.0005	0.027		
methylchloroisothiazolinone	ND	0.584	0.008	0.882	0.0075	0.626	ND	0.374
methylisothiazolinone	ND	0.965	0.0071	0.841	0.0063	0.819	0.0071	0.421
methanol	0.0146	0.854	0.0027	0.268	0.0014	0.158		
naphthalene	ND	-0.836	0.0019	-0.666	0.0022	0.196		
2-methylphenol (o-cresol)	ND	-0.757	0.0025	-0.693	0 0006	0.435		
polyacrylamide	ND	-0.672	0.0131	-0.594	0.0003	0.546		
polyoxypropylenediamine	ND	-0.192	0.0017	0.346	Ø.0012	0.748	0.0097	-0.388
propylene glycol	0.0009	0.54	0.0025	-0.579	0.001	0.748		
pristane (C15)	0.0001	-0.088	0.0111	0.116	0.0002	0.662	0.0007	0.088
triethanolamine	0.0437	0.458	0.0081	0.706	0.0005	0.314	0.0024	-0.467
			\backslash					

Kandosol: zero time control (Permanova pval:0.0023 | Correlation to zero time r: 1.0)

	Chromo	sol	Kando	osol	Verto	sol	Teno	
	pval	r	pval	r	pval	r	pval	r
2-aminoethanol	0.0005	-0.316	0.0016	0.638	0.0058	0.27	0.0005	-0.005
C12 ethoxylated alcohol	0.0261	0.612	0.008	0.268	0.0082	0.305	0.0005	0.194
2-butoxyethanol	0.0002	-0.605	0.002	-0.799	0.0002	0.595		
bronopol	0.0007	0.956	0.0032	0.94	0.0004	0.952	0.0073	0.311
benzisothiazolinone	0.0013	0.949	0.0026	0.762	0.0004	0.406	0.0112	0.315
diethylene glycol lethyl ether	ND	0.733	0.0031	-0.047	ND	0.647	0.045	-0.689
d-limonene	0.048	0.585	0.0148	-0.489	0.0411	0.324		
diesel	0.0002	0.634	0.0012	-0.32	0.0006	0.388		
eicosane (linear-C20)	0.0074	0.848	ND	-0.494	0.0011	0.581	0.0046	-0.341
ethylene glycol	0.0003	0.818	0.0019	-0.575	0.0011	0.182		
2-ethylhexanol	0.0025	-0.967	0.0025	-0.199	0.0013	0.39		
glutaraldehyde	0.0003	-0.816	0.0012	0.536	0.0009	0.15	0.0015	-0.173
glyoxal	0.0003	0.605	0.0089	-0.381	0.0006	0.821	0.0009	0.431
hydrotreated light petroleum								
distillate	0.0191	0.43	0.0066	-0.156	0.0414	0.425	0.0285	-0.376
hexahydro-1,3,5-tris(2-hydroxyethyl)-								
sym-triazine	0.0008	0.948	0.0015	0.398	0.0014	0.489	0.0013	0.192
isopropanol	0.0141	0.829	0.0155	-0.602	0.0005	0.027		
methylchloroisothiazolinone	ND	0.584	0.008	0.882	0.0075	0.626	ND	0.374
methylisothiazolinone	ND	0.965	0.0071	0.841	0.0063	0.819	0.0071	0.421
methanol	0.0146	0.854	0.0027	0.268	0.0014	0.158		
naphthalene	ND	-0.836	0.0019	-0.666	0.0022	0.196		
2-methylphenol (o-cresol)	ND	-0.757	0.0025	-0.693	0.0006	0.435		
polyacrylamide	ND	-0.672	0.0131	-0.594	0.0003	0.546		
polyoxypropylenediamine	ND	-0.192	0.0017	0.346	0.0012	0.748	0.0097	-0.388
propylene glycol	0.0009	0.547	0.0025	-0.579	0.001	0.748		
pristane (C15)	0.0001	-0.088	0.0111	0.116	0.0002	0.662	0.0007	0.088
triethanolamine	0.0437	0.458	0.0081	0.706	0.0005	0.314	0.0024	-0.467

 $^{-8}$

0TU_20 -OTU_49 -OTU_123 -0TU_21 -OTU_51 оти_145 -оти_97 -OTU_37 -OTU_124 оти_160 -0TU_45 оти_129 -ОТИ_59 -OTU_137 -OTU_103 оти_132 -оти_237 -0TU_91 -

OTU_1 -OTU_B.

'species'

Conclusions & Recommendations

Baselines

Aquifers

- Aquifer communities dominated by autotrophs
- Most extensive aquifer study to date in the Northern Territory (38 wells)
- Mean richness >300 OTUs per well.

Soils

- UV tolerant organisms detected
- Soil type did not predict microbial diversity
- Generally more diverse >475 OTUs per sample.
- Fungal diversity high and unusual (data not shown)

Chemicals of potential concern

- Microbial degradation offers an addition defence against some chemical contamination (in the unlikely event of a spill/leak)
- Biocides impact on soils & aquifers and effects are similar maybe bacteriostatic.
 Various alcohols impacted soils and aquifers.

Aquifers

- Some chemicals degraded within 3 months, others did not.
- Aquifer microbiomes response was not consistent between replicates cell numbers are low ~10⁴/mL.
- Identified indicator taxa and potential catabolists.

Soils

- Those COPC tested readily degraded in soil in 1 month
- Some increasing taxa are associated with degradation of these chemicals.
- Identified numerous potential indicator taxa that could be used for biomonitoring.
- Soil wetting impacts microbial diversity markedly.

Conceptual model

Numerous OTUs were identified that have close relatives that can degrade chemicals examined.

Conceptual was developed noting these taxa.

Microbial degradation of biocides is unclear from this study.

Biocides prevent the normal shift in soils of the Beetaloo Basin region that occurs during wetting events (e.g. rain or flooding).

Recommendations

Baseline data represents an important first step, however, future surveys to determine the biodiversity and stability of these communities are advised.

Indicator taxa were identified and may be useful for biomonitoring of these aquifers. However, further baseline profiling is suggested to determine any seasonal, temporal changes.

Chemicals examined here were used at industrially relevant concentrations. It is noteworthy that chemicals were tested individually and not in combination. Combinations may change the rates of biodegradation and impacts on microbial communities.

Thank you

CSIRO ENERGY

Dr. David J. Midgley Biogeochemistry & Microbiology Team Lead

+61 2 94137862 david.midgley@csiro.au csiro.au/energy

