

Measurements of air quality during hydraulic fracturing in the Surat Basin

Erin Dunne | Research Scientist, CSIRO Climate Science Centre | December 2019

Potential sources of air pollutants

- Vehicles & equipment exhaust emissions & dust
- Fracturing fluids & flow back fluids emissions during handling & storage
- Coal seam gas fugitive emissions & venting

Other air pollutant sources in the background atmosphere:

- **Biomass burning**
- Long range transport
- Agriculture & farming
- Local traffic & domestic emissions
- Vegetation & soil

Air quality study location

Source: Queensland Globe (2016). "Queensland Government CSG Globe" Available: https://www.business.qld.gov.au/business/support-tools-grants/services/mapping-data-imagery/queensland-globe

Air quality measurement stations

Two Ecotech Air Quality Monitoring Stations (AQMS North & South)

ibabula developmentarea

Five solar-powered air quality monitoring systems - 4 located ~50 - 100m from well pads -1 site co-located with South AQMS

Measurement sites

Sites located according to: proximity to wells; access to power; prevailing winds

Measurement sites

Target air pollutants & air quality objectives

National Environmental Protection Measure (NEPM) Ambient Air Pollutants

Nitrogen dioxide (NO₂) Carbon monoxide (CO) Sulfur dioxide (SO₂) Ozone (O₃) Particles – diameter less than 10 μm (PM₁₀) Particles – diameter less than 2.5 μm (PM_{2.5})

National Environmental Protection Measure (NEPM) Air Toxics

Formaldehyde Benzene Toluene Xylenes Benzo(a)pyrene as a marker for PAHs

Additional Pollutants in Qld Environmental Protection Policy for Air

Components in PM₁₀ – Arsenic, Manganese, Nickel, Sulfate Gases - Mercury, Hydrogen Sulfide, Styrene, 1,2,-Dichloroethane, Tetrachloroethylene

Australian Radiation Protection & Nuclear Safety Agency (ARPANSA) Recommendations for Limiting Exposure to Ionizing Radiation

Radon-222

Measurements before, during & after hydraulic fracturing

	Jul	Aug	Sept	Oct	Nov	Dec
Well Development						
Drilling						
Hydraulic Fracturing + Well Completion (HF + WC)						
Continuous sampling						
North & South AQMS NO ₂ , CO, O ₃ , SO ₂ , and PM _{2.5} , PM ₁₀ (mass)						
Formaldehyde & BTX						
Radon & mercury						
Intensive Sampling						
North & South AQMS Daily PM ₁₀ (composition) Formaldehyde, BTX, PAHs						
Solar AQMS- Weekly PM _{2.5} , PM ₁₀ Daily formaldehyde & BTX						

Objective 1

- Provide comparisons of the air quality observed at a hydraulic fracturing (HF) site with Australian federal and state air quality objectives
- Provide comparisons with data from other air quality studies undertaken in areas not directly impacted by HF operations both within the Surat Basin and in other locations in Australia.

NEPM Ambient air pollutants – air quality index values

			Proportion of total observations in each AQ index category						
AQ Index categ	ories		Very Good	Good Fair			Poor	Very Poor	
Location	Pollutant	AQ objective							
	NO ₂	NEPM 1h	100%	0%	0%		0%	0%	
	СО	NEPM 8h	100%	0%	0%		0%	0%	
	03	NEPM 1h	68%	32%	0%	0	0%	0%	
		NEPM 4h	45%	55%	1%	sctive	0%	0%	
North AQMS	SO ₂	NEPM 1h	100%	0%	0%	Obje	0%	0%	
		NEPM 24h	100%	0%	0%	ality	0%	0%	
	PM _{2.5}	NEPM 24h	85%	13%	2%	ir Qu	0%	0%	
	PM ₁₀	NEPM 24h	88%	12%	1%	ent A	0%	0%	
	TSP	EPP 24h	81%	17%	1%	∖mbi	1%	0%	
	NO ₂	NEPM 1h	100%	0%	0%	PM 4	0%	0%	
	СО	NEPM 8h	100%	0%	0%	NE	0%	0%	
	03	NEPM 1h	62%	38%	0%		0%	0%	
South AQMS		NEPM 4h	34%	65%	1%		0%	0%	
	PM _{2.5}	NEPM 24h	86%	13%	1%		0%	0%	
	PM ₁₀	NEPM 24h	83%	13%	3%		1%	0%	
	TSP	EPP 24h	70%	23%	4%		2%	2%	

NEPM pollutants – comparison with other locations

NEPM pollutants (NO₂, CO, O₃, PM_{2.5}, PM₁₀) and TSP levels were similar to those at Surat Basin sites not directly impacted by HF activities, during the same period.

		Proportion of total observations in each AQ index category					
AQ Index categories		Very Good	Good	Fair	Poor	Very Poor	
NO ₂ 1-hour average	North-AQMS	100%	0%	0%	0%	0%	
	South-AQMS	100%	0%	0%	0%	0%	
	Hopeland	100%	0%	0%	0%	0%	
	Miles Airport	100%	0%	0%	0%	0%	
	Burncluith	100%	0%	0%	0%	0%	

		Proportion of total observations in each AQ index category					
AQ Index categories	Very Good	Good	Fair	Poor	Very Poor		
PM ₁₀ 24-hour average	North-AQMS	88%	12%	1%	0%	0%	
	South-AQMS	83%	13%	3%	1%	0%	
	Hopeland	93%	7%	0%	0%	0%	
	Miles Airport	87%	11%	2%	0%	0%	

Air toxics – comparison with NEPM objectives

Air toxics – comparison with other locations

	HF site (this study)		HF Sites 201	HF Sites 2016/17 ^a		ites ^b n CSG)	Gas-field sites ^b	
	Roma-Yuleba region		Miles-Condamine region		Tara region & Burncluith		Wilgas, Hopeland	
	Range (ppb)	DF (%)	Range (ppb)	DF (%)	Range (ppb)	DF (%)	Range (ppb)	DF (%)
Benzene	0.02 - 0.07	18%	0.01 - 0.09	21%	0.02 - 0.05	25%	0.01 - 0.09	29%
Toluene	0.01 - 0.03	18%	0.01 - 0.18	29%	0.01 - 0.04	21%	0.01 - 0.04	43%
m & p-xylenes	0.01 - 0.06	12%	0.01 - 0.08	9%	0.01 - 0.06	13%	0.01 - 0.03	19%
o-Xylene	< 0.02	0 %	0.01 - 0.03	4%	0.01 - 0.03	4%	0.01 - 0.04	5%
Formaldehyde	0.04 - 1.30	94%	0.33 – 2.12	100%	0.04 - 1.30	83%	0.39 - 1.30	100%

DF% = detection frequency (%)- the number of observations above the detection limit of the method

^a Dunne et al (2018) available :https://gisera.csiro.au/project/air-water-and-soil-impacts-of-hydraulic-fracturing/ ^b Lawson et al (2018) available: https://gisera.csiro.au/project/ambient-air-quality-in-the-surat-basin/

Air toxics – comparison with other locations

	Benzo(a)pyrene (BaP) as a marker for PAHs (µg/m³)					
	This study (rural)	Mutdapilly (rural) Summer ^a	Mutdapilly (rural) Winter ^a	Woolloongabba ^b (urban)		
Max	0.022			0.051		
Average	0.005	<0.006	0.007	0.028		
a (Kennedy et al 20 b (NEPC 2017)	010a)					

Mercury & Radon – comparison with air quality objectives & levels observed at other locations

Mercury

Location	Average & standard deviation	Air Quality Objective	
This study	$0.57 \pm 0.12 \text{ ng/m}^3$	1100 ng m ⁻³	Annual Qld EPP
Near Darwin, NT 2015 ^a	$0.93 \pm 0.12 \text{ ng/m}^3$		
Southern Ocean, Tasmania, 2013	0.85 ± 0.11 ng/m ³		
Inland site, Hunter Valley NSW 2019	0.8 - 1.0 ng/m ³		
Snowy Mountains, NSW 2017	0.59 ± 0.10 ng/m ³		

Radon

	Average	Max	Air Quality Objective		
South-AQMS	4.44 Bq m ⁻³	9.96 Bq m ⁻³	200 Bq m ⁻³	Long term ARPANSA objective for households	
Tara region (Surat Basin)	9.2 Bq m ⁻³	34.2 Bq m ⁻³			

Objective 1 – findings

• Provide comparisons of the air quality observed at a HF site with Australian federal and state air quality objectives.

 \rightarrow Levels of most air pollutants were well below relevant air quality objectives for the entire duration of the study period.

• Provide comparisons with data from other air quality studies undertaken in areas not directly impacted by HF operations both within the Surat Basin and in other locations in Australia.

→ Range of concentrations observed (including exceedances of $PM_{10} \& TSP$) were not distinctly different to those observed at other sites in the Surat Basin and in Australia that were not directly impacted by HF activity.

Objective 2

Quantify increases in air pollutant levels above background that occur during HF operations.

 Potential increases in pollutant concentrations above background due to well development activity were assessed using higher time resolution (5-10 minute) pollutant concentration and wind direction data.

Quantifying changes in pollutant levels

Were pollutant levels higher downwind of HF + WC than they were when sampled:

- from other wind directions during the same period?
- during periods when no HF + WC was occurring on site?

Quantifying changes in pollutant levels – NO₂

- NO₂ levels were low for a majority of the time (95%) for all activity and non-activity periods.
- The top 5% of NO₂ observations were slightly higher when measuring downwind HF + WC.

Quantifying changes in pollutant levels – airborne particles (PM₁₀)

- PM₁₀ levels were similar for a majority of the time (95%) across all activity and non-activity periods
- Measurements downwind of HF + WC activity did not coincide with the highest peaks in PM₁₀ at either the North or South-AQMS.

Quantifying changes in pollutant levels – BTEX

With the exception of one peak event during HF + WC activity, the top 5% of BTEX values when measuring downwind of HF + WC were within the range of:

- the top 5% of values when measuring air masses from other WDRs during the same period
- during non-activity periods.

Objective 2 - findings

Quantify enhancements in air pollutant levels above background that occur during HF operations.

- Short-term increases in the concentrations of NO₂, CO, PM₁₀, PM_{2.5}, TSP, BTEX and formaldehyde above background.
- These impacts occurred at levels below air quality objectives, with the exception of infrequent dust events.
- Well development activity was not associated with measurable enhancements in O₃, SO₂, mercury and radon.

Objective 3

Provide information on the contribution of HF and non-HF related sources of air pollutants to local air quality at the study site.

Enhancements above background were observed for:

- NO₂, CO not components of HF fluids/flowback and dominant source was diesel exhaust
- PM_{2.5}, PM₁₀, TSP, Formaldehyde and BTEX
- → may be emitted from HF fluids/flowback and further assessment of sources was undertaken
- Use of statistical techniques for source apportionment PM
- Identification of tracers from known source profiles air toxics

Sources of airborne particles (PM₁₀, PM_{2.5}, TSP)

- Chemical composition analysis of particle samples was undertaken
- A statistical model (positive matrix factorisation PMF) applied to the PM₁₀ chemical composition data
- Eight dominant factors that contributed to PM identified.

Factors	Average contribution	Potential sources
Soil	37%	Soil dust from vehicles &
Secondary ammonium sulfate	16%	equipment was the only PM source attributable to well
Secondary nitrate aged sea salt	13%	 7 days when dust from vehicles and equipment on
Aged biomass smoke	11%	site resulted in exceedances
Fresh sea salt	9%	in PM ₁₀ and TSP.
Woodsmoke	7%	events dependent on
Glucose	5%	meteorology, especially
Primary biological aerosols	2%	rainfall.

Sources of airborne particles (PM₁₀, PM_{2.5}, TSP)

Sources of air toxics – BTEX

- Relationship with acetonitrile, a smoke tracer, indicates smoke was a significant contributor to BTEX at the study site.
- Benzene > Toluene is typical of smoke \rightarrow background air pollution from region
- Toluene \geq Benzene typical of vehicle exhaust \rightarrow emissions from well pad

Source composition analysis

- HF fluids, drilling fluids well-completion reports, safety data sheets, NICNAS (2017)
- Flowback/produced waters this project (Apte et al 2019), NICNAS (2017)
- CSG Day *et al.* (2016), NICNAS (2017), GISERA Project G.3 (Lawson *et al.* 2017)
- → These HF-specific sources did not contain high levels of contaminants which have low solubility/ high volatility & therefore may impact air quality e.g. BTEX, PAHs, mercury, radon
- → Due to the low levels in gas & fluids, direct emissions of pollutants to the air from these HF-specific sources was unlikely to have contributed significantly to airborne concentrations.

Objective 3 – findings

Provide information on the contribution of HF and non-HF related sources of air pollutants to local air quality at the selected study site.

- \rightarrow Soil dust was identified as the source of the exceedance of PM₁₀ and TSP
- → Dust events were associated with the movement of vehicles and equipment on unsealed roads on site
- → Emissions from diesel powered vehicles and equipment on well pad the most likely source of small enhancements in:
- Air toxics BTEX, formaldehyde, PAHs and
- NEPM ambient air pollutants NO₂, CO, PM_{2.5}

which were still well within relevant ambient air quality objectives.

→ Analysis of available data on composition of HF fluids, flowback fluids and CSG indicates direct emissions of pollutants to the air from HF-specific sources were unlikely to have contributed significantly to air pollutant levels.

Summary and conclusion

- In this study, hydraulic fracturing activity made a minor but measurable impact on the levels of air pollutants.
- The exception was occasional dust events associated with vehicle movements.

In general, the impacts of hydraulic fracturing on ambient air quality are likely to be minor depending on:

- well integrity
- the safe storage, handling & transport of HF chemicals, flowback fluids & CSG at the surface
- dust suppression.

Air Quality Reports

Phase 1 Air Quality Reports available: https://gisera.csiro.au/project/air-water-and-soil-impacts-of-hydraulic-fracturing

- Task 4Design of a study to assess the potential impacts of hydraulic fracturing on air
quality in the vicinity of well sites in the Surat Basin, Queensland (Revised study
design for Combabula site) Nov 2017
- Task 6Measurements of VOCs by passive Radiello sampling at a hydraulic fracturing site
in the Surat Basin, Queensland June 2018

Phase 2 Air Quality Reports available: https://gisera.csiro.au/project/air-water-and-soil-impacts-of-hydraulic-fracturing-phase-2/

- Task 1Air Quality Measurement report- March 2018
- Task 3Measurements of air quality at a hydraulic fracturing site in the Surat Basin,
Queensland- Final Report expected publication late 2019-early 2020

Thank you

Erin Dunne Research Scientist

- t +61 3 9239 4434
- e erin.dunne@csiro.au
- w gisera.csiro.au

Air Quality Project contributors:

CSIRO Climate Science Centre

Erin Dunne, Melita Keywood, Jason Ward, James Harnwell, Jennifer Powell, Paul Selleck, Maximilien Desservettaz, Suzie Molloy, Min Cheng, Scott Henson

<u>ANSTO</u>

Alistair Williams, Sylvester Werczynski, Ot Sisoutham Armand Atanacio

Macquarie University Grant Edwards, Anthony Morrison

Queensland Alliance for Environmental Health Sciences (QAEHS) Fisher Wang

Ecotech and SGS Leeder

Origin Energy

