Background

- Scientific Inquiry into Hydraulic Fracturing in the Northern Territory (March 2018)
 - “baseline monitoring of methane concentrations be undertaken for at least six months prior to the grant of any further exploration approvals. In areas where hydraulic fracturing has already occurred, the baseline monitoring should be undertaken at least a year prior to the grant of any production approvals”
Aim

- Quantify background atmospheric concentration levels of methane in areas of the Beetaloo Sub-Basin that are of interest for exploration;
- Identify & locate sources of methane & where applicable and feasible, quantify the fluxes related to sources.
Background: Methods/Technologies For Measuring Emissions

- Ambient methane concentrations
 - Indicates leak or other source
 - Gas analysers;
 - Leak detectors;
 - Optical systems;
 - Remote sensing
 - Can show spatial distribution of sources
 - Concentration varies with ambient conditions
 - Time of day;
 - Wind;
 - Distance from source;

http://www.picarro.com/products_solutions/trace_gas_analyzers/co_co2_ch4_h2o
Background: Mobile Survey

- One of most widely used, reliable and well-developed techniques;
- Employ high sensitivity analysers deployed from 4WD drive;

Advantages
- Immediate deployment & with temporal acquisition allows accurate monitoring of concentrations & fluxes;
- Capacity to travel over many thousands of kilometres => broad-scale measurement programs;
- Allows detailed surveys of areas to be conducted to locate and identify sources;
- Emission rate estimates possible when combined with local meteorological data and a simple plume dispersion model or tracer gas;

Disadvantages
- limited to trafficable roads and tracks;
- surveys are periodic, not continuous – may not capture long term variations.
For greenhouse accounting we need to know emission rates

- Emission Rate (kg s\(^{-1}\)) = Concentration (kg m\(^{-3}\)) \times Flow (m\(^3\) s\(^{-1}\))

- Relatively easy in pipes and ducts (e.g. underground coal mines)
Background: Quantification Of Emissions Rates

- More difficult with diffuse sources:
 - Open-cut coal mines
 - Agriculture
 - Gas fields

- Possible approaches
 - Top down – i.e. attempt to measure emissions over entire region
 - Atmospheric transport methods;
 - Includes all sources; complicates interpretation;
 - Bottom up – i.e. measure emissions from individual sources (e.g. wells) then add up to yield total emissions
 - May miss sources; provides information on emission routes
Background: Requirements

Baseline: Pre-activity detailed accounting of
- Regional ambient levels including temporal variations;
- Identification of present and potential sources of emission in the area of interest (and adjacent areas potentially influence by it);
 - Location
 - Quantification
 - Spatial-temporal variations
 - Concentration
 - Flux
- Is the backbone/foundation from which future monitoring program is to be built on.

Monitoring: Tracking variations from baseline
- At location where elevated values detected;
- At locations where elevated values may be induced by activities;
- Regional ambient temporal trends;
Background: Potential Sources of Methane Emissions in Beetaloo sub-Basin

<table>
<thead>
<tr>
<th>Source</th>
<th>Spatial Scale</th>
<th>Individual Concentration</th>
<th>Cumulative Concentration</th>
<th>Temporal Variation</th>
<th>Location</th>
<th>Quantification method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livestock (cattle)</td>
<td>Small</td>
<td>Small</td>
<td>Large</td>
<td>NA</td>
<td>Dispersed</td>
<td>Estimates using emission factors well established</td>
</tr>
<tr>
<td>Fires</td>
<td>Large</td>
<td>NA</td>
<td>Large</td>
<td>Dry</td>
<td>Unknown</td>
<td>Total GHG inferred from fires mapped from satellite – CH₄ not discriminated</td>
</tr>
<tr>
<td>Termites</td>
<td>Small</td>
<td>Small</td>
<td>Unknown</td>
<td>Wet</td>
<td>Dispersed</td>
<td>Not well understood</td>
</tr>
<tr>
<td>Wetlands</td>
<td>Medium</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Wet</td>
<td>Not all well characterised</td>
<td></td>
</tr>
<tr>
<td>Natural geological seeps</td>
<td>Small</td>
<td>Small</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown, not well characterised</td>
<td></td>
</tr>
<tr>
<td>Abandoned/old petroleum & mineral, water bores</td>
<td>Small</td>
<td>Small-medium</td>
<td>Unknown</td>
<td>Continuous</td>
<td>Some knowledge</td>
<td>As above; Monitoring methods established but not continuous</td>
</tr>
<tr>
<td>Future: Onshore operating wells</td>
<td>Small</td>
<td>Small</td>
<td>Unknown</td>
<td>Continuous</td>
<td>Well known</td>
<td>Monitoring methods established but not continuous</td>
</tr>
<tr>
<td>Future: Offshore operating infrastructure</td>
<td>Medium</td>
<td>Medium - large</td>
<td>Unknown</td>
<td>Continuous</td>
<td>Well known</td>
<td>Development required</td>
</tr>
<tr>
<td>Waste treatment facility</td>
<td>Medium</td>
<td>Small - Medium</td>
<td>NA</td>
<td>Well known</td>
<td>Methods well developed</td>
<td></td>
</tr>
</tbody>
</table>

GISERA G5 | 31 January 2020 | 10
Results: Mobile Survey Summary

- 3 mobile survey campaigns total ~15,000 km between July 2018 to February 2019.
 - 1st campaign, dry season: total ~5,500 km between 29th July – 10th August 2018;
 - 2nd campaign, fire season: ~5,300 km between 6th – 15th November 2018;
 - 3rd campaign, wet season: ~4,050 km between 30th January - 5th February 2019
Results: Summary of Mobile Survey

Average, median, standard deviation and maximum CH$_4$ concentration values measured during the three mobile survey campaigns

<table>
<thead>
<tr>
<th></th>
<th>Campaign 1 (LGR)</th>
<th>Campaign 2 (LGR)</th>
<th>Campaign 3 (LGR)</th>
<th>Campaign 1 (PICARRO)</th>
<th>Campaign 2 (PICARRO)</th>
<th>Campaign 3 (PICARRO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average (ppm)</td>
<td>1.839</td>
<td>1.827</td>
<td>1.808</td>
<td>1.817</td>
<td>1.811</td>
<td>1.796</td>
</tr>
<tr>
<td>Median (ppm)</td>
<td>1.835</td>
<td>1.826</td>
<td>1.807</td>
<td>1.813</td>
<td>1.811</td>
<td>1.795</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.019</td>
<td>0.013</td>
<td>0.017</td>
<td>0.018</td>
<td>0.012</td>
<td>0.019</td>
</tr>
<tr>
<td>Maximum (ppm)</td>
<td>2.604</td>
<td>2.206</td>
<td>2.920</td>
<td>2.310</td>
<td>2.094</td>
<td>2.297</td>
</tr>
</tbody>
</table>

Methane concentration measured at Cape Grim during survey periods

<table>
<thead>
<tr>
<th></th>
<th>August 2018</th>
<th>November 2018</th>
<th>February 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>1.826</td>
<td>1.820</td>
<td>1.798</td>
</tr>
</tbody>
</table>
Results: Dry Season (29th July – 10th August 2018)
Beetaloo Baseline: Grazing Cattle

- Elevated concentrations from cattle
- Estimated total emission = 7,402,159 kg CH$_4$ yr$^{-1}$ from 115K beast (NTCA, 2019)

Average emission factors 54.75-73.00 kg CH$_4$ per beast per yr$^{-1}$ Charmley et al. (2016). The average of this, 63.88 kg yr$^{-1}$ was used for the estimation.
Results: Fire Season (6th – 15th November 2018)
Results: Fires
Results: Wet Season (30th January - 5th February 2019)
Results: Termites

- No elevated values detected during dry campaign;
- Elevated values detected during wet campaign;
- Emission rate estimated $\sim 900,000$ kg CH$_4$ yr$^{-1}$ (based on (Jamali et al. 2011: 0.24 kg CH$_4$-C ha$^{-1}$ yr$^{-1}$ or 0.32 kg CH$_4$ ha$^{-1}$yr$^{-1}$))
Results: Soils

- Soil fluxes were measured at 8 sites throughout 3rd mobile campaign;
- Estimated emission sink for Beetaloo sub-Basin ~ approximately 4,200,000 kg CH$_4$ yr$^{-1}$ based on Jamila et al. 2011: 1.52 kg CH$_4$ ha$^{-1}$ yr$^{-1}$

<table>
<thead>
<tr>
<th>Site Surface Description</th>
<th>Methane Emission Flux (mg CH$_4$ m$^{-2}$ day$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grassed edge of track – damp soil</td>
<td>-2.3</td>
</tr>
<tr>
<td>In free water on the grassed verge</td>
<td>-1.4</td>
</tr>
<tr>
<td>Dry ground without vegetation</td>
<td>-3.8</td>
</tr>
<tr>
<td>Dry ground without vegetation</td>
<td>0.5</td>
</tr>
<tr>
<td>Grassed edge of a large stagnant water body; Location 1</td>
<td>98.0</td>
</tr>
<tr>
<td>Grassed edge of a large stagnant water body; Location 2</td>
<td>5.1</td>
</tr>
<tr>
<td>Grassed edge of a large stagnant water body; Location 3</td>
<td>23.3</td>
</tr>
<tr>
<td>Stagnant water body – in the water</td>
<td>113</td>
</tr>
</tbody>
</table>
Results: Pipeline Riser

- Elevated values detected during all campaigns;
- Emission rates quantified during 3rd campaign - 43.8 kg CH$_4$ yr$^{-1}$;
- 60-80 % of a cattle;
- Under threshold of NT’s code of practice (5000 ppm at 150 mm).
Results: Petroleum Wells

- Visited or was close to 11 plugged & abandoned & suspended wells at least once during mobile survey campaigns;
- No elevated values measured

Birdum Creek

West Beetaloo 1
Results: Water Bores

- Visited or close to 25 bores at least once during 3 campaigns;
- No elevated values measured at most bores; small number have small levels above background but cattle close by; elevated values close of Daly Waters Motel bore near septic tank;
Results: Wetlands

- Small elevated values but not possible to get close enough in wet season
Findings, Implications, Further Work

• A comprehensive baseline encompassing the main potential sources of methane has been developed for the Beetaloo sub-Basin;
 - Provides a strong foundation for a methane emissions pre-exploration baseline;
 - Source of methane emission identified
 • Grazing cattle;
 • Townships;
 • A section of above-ground gas pipeline and associated valves;
 • Fires;
 • Termites;
 • Wetlands;
• No elevated values detected at PNA and suspended petroleum wells;
Findings, Implications, Further Work

- **Recommendation 1**: Before drilling activities begin, comprehensive soil CH$_4$ baseline acquired around the well pad areas to capture natural background CH$_4$ emission of the surrounding area;

- **Recommendation 2**: Collect methane measurements throughout the hydraulic fracturing operations to understand the emissions related to the hydraulic fracturing operations and related flow back – USA studies suggested potentially a significant source of CH$_4$;

- **Recommendation 3**: Install remote monitoring stations according to recommendations 9.3 of the Scientific Inquiry to provide continuous monitoring of the operations of the infrastructure;

- **Recommendation 4**: investigate remote sensing technology/methods including expanding on existing optical satellites data methods and, investigate new satellites that specifically measure GHG such as methane, carbon dioxide and carbon monoxide such as the European Space Agency’s Sentinel-5P to reduce uncertainties in quantifying emissions related to fires & wetlands;

- **Recommendation 5**: Local scale investigation of spring area and better quantification of emissions related to wetlands.
Acknowledgements

- Logistical and field support
 - Chris Moss and Dave Armstrong (Pangaea Resources);
 - Robert Wear (Origin Energy);
 - Trevor Edwards (Santos);

- Organisation and guidance
 - NT Department of Primary Industry and Resources;

- CSIRO team
 - Stuart Day, Bruce Maney, Mederic Mainson, Matthew Myers and Dave Down
Thank you

Cindy Ong
Principal Research Scientist

+61 8 6436 8677
cindy.ong@csiro.au
gisera.org.au