

An integrated study of the Gladstone Marine System

Gladstone Harbour biogeochemical and seagrass growth model

Mark Baird

11-12 August 2015

1 Biogeochemical and seagrass model | 11-12 August 2015 |

Biogeochemical modelling and seagrass.

Project began with a recognition that:

- Seagrass dynamics can only be understood if environmental conditions are well represented → need for a coupled hydrodynamic biogeochemical model.
- Representing light-limitation is critical, and that it is desirable to consider light at multiple wavelengths
 spectrally-resolved optical model.
- Existing seagrass models miss processes that observational studies suggest are critical → translocation of biomass between leaves and roots, uptake of nutrients from varying depths in the sediments, physiological differences between seagrass types.
- Model improvements in GISERA would be valuable for future applied studies in Gladstone (GHHP) and along the whole Queensland coast (eReefs).

CSIRO Environmental Modelling Suite (EMS)

P – phytoplankton Z – Zooplankton D – Detritus M – Macrophytes. In biogeochemical model: Boxes – stores of nutrients Arrows – fluxes of nutrients.

N – nutrients

Gas Industry Social & Environmental Research Alliance

Regional hydrodynamic models

- Hydrodynamic models of 4 km and 1 km forced by global model and 22 rivers.
- Hindcast from Sep 2010 present day.
- Near real time.
- 4 km version resolves interaction of large rivers, reef matrix, shelf and open ocean.
- 1 km resolves individual reefs, river plumes etc. 200 m resolution models forced by GBR4 and GBR1 resolves reef crest / reef lagoon / river entrances.

200 m regional models

Plotted: 17-Sep-2014 10:35:34

PORT CURTIS

NEAR REAL-TIME HYDRODYNAMIC MODELLING

Last updated : 09-Aug-2015 02:11:21

GHHP Harbour Receiving Water Quality Model

- •Approx 200 m resolution model hydrodynamic model run for Sep 2010 to present.
- Calliope and Boyne Rivers resolved past the tidal limit.
- Atmospheric forcing from BoM, Calliope and Boyne rivers from QLD govt.
- •Assessed against PCIMP sediment and biogeochemical and JCU seagrass observations, but produced without a dedicated observational program.
- Biogeochemical and sediment model ocean boundary conditions provided by eReefs 4 km 2010 hindcast.

NEAR REAL-TIME HYDRODYNAMIC MODELLING

PORT CURTIS

NEAR REAL-TIME HYDRODYNAMIC MODELLING

Last updated : 12-Jan-2015 02:02:28

Sediment transport model

- Simulates sinking, deposition and resuspension of suspended sediment
- Adds a multilayer sediment bed to the EMS grid
- Is driven by 3-D hydrodynamics and wave data
- Provides physical settings to simulate biogeochemical model

Optical model

Spectrally-resolved vertical attenuation of light due to scattering and absorption of (19 optically-active components in total):

- 4 phytoplankton classes with two pigments
- Coloured dissolved organic matter
- Suspended inorganic particles and detritus
- water molecules
- Bottom substrates seagrass, macroalgae, benthic microalgae, corals (skeletons and symbionts).

Only about 3 % of light returns

Optical model - Inherent Optical Properties (IOPs) from model state.

Suspended sediment properties – scattering / attenuation observations from an acs.

Results from optical model

Optical model produces spectrally-resolved depth profile:

- Distinguish between impact of
 - sediment plume (scattering)
 - Phtyoplankton bloom (absorption at chl. pigment maximum

Narrows

Optical-depth weighted reflectance as a result of 20 optically-active constituents initialised 100 days earlier, and transported, biogeochemically -transformed, flocculated and resuspended, to determine reflectance at any time, viewed at a solid angle, R_{rs} [sr⁻¹]

Gas Industry Social & Environmental Research Alliance

CæsIndustry Social & Environmental Research Alliance

Simulated true colour animation in September 2010

GISERA Gas Industry Social & Environmental Research Alliance

Seagrass model.

- •Two seagrass types: Zostera and Halophila.
- •Resolve above and below ground biomass.
- Spectrally-resolved absorption
 At low biomass, absorption is a
- linear function of biomass
- •At high biomass independent of biomass.
- •Curve follows a cumulative Poisson dist of probability of leaves covering each other as shown by the '+'.

Results

What determines the light available to seagrass communities?

- Solar radiation (clouds etc.)
- Depth of water (varies with site, and point in tide)
- Vertical attenuation coefficient (K_d) that varies with suspended solids, chlorophyll concentration.
- Seagrass growth depends on the recent light history (see production).

Comparison of GHHP configuration multi-species seagrass distribution after 2 year simulation with observed mean distribution over 2002-2012.

Model is spatially more homogenous, but generally produces realistic biomass and distribution of shallow and deeper water seagrass.

Thank you to the JCU TropWATER for providing the raw observations.

Running average monthly light above seagrass.

month_EpiPAR_sg: Control 2013-01-01 10 23.6 S Narrows 9 8 23.7 S 7 Coral Sea 23.8 S 6 5 Calliope R 23.9 S 4 3 2 Boyne R. 1 Area (E > 4) = 171.7 km² 0 151.7 E 151.4 E 151.5 E 151.6 E

Thank you

Mark Baird CSIRO Oceans and Atmosphere Townsville / Hobart <u>Mark.Baird@csiro.au</u>

> Gladstone Harbour, eastern Australia Simulated true color 02-Sep-10 00:00 Elevation -0.39332m SWR -0.38543 W m⁻²

